Suppr超能文献

在国家范围内对藻类生物燃料的成本、排放和资源潜力进行综合评估。

Integrated evaluation of cost, emissions, and resource potential for algal biofuels at the national scale.

机构信息

Center for Transportation Research, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States.

出版信息

Environ Sci Technol. 2014 May 20;48(10):6035-42. doi: 10.1021/es4055719. Epub 2014 May 12.

Abstract

Costs, emissions, and resource availability were modeled for the production of 5 billion gallons yr(-1) (5 BGY) of renewable diesel in the United States from Chlorella biomass by hydrothermal liquefaction (HTL). The HTL model utilized data from a continuous 1-L reactor including catalytic hydrothermal gasification of the aqueous phase, and catalytic hydrotreatment of the HTL oil. A biophysical algae growth model coupled with weather and pond simulations predicted biomass productivity from experimental growth parameters, allowing site-by-site and temporal prediction of biomass production. The 5 BGY scale required geographically and climatically distributed sites. Even though screening down to 5 BGY significantly reduced spatial and temporal variability, site-to-site, season-to-season, and interannual variations in productivity affected economic and environmental performance. Performance metrics based on annual average or peak productivity were inadequate; temporally and spatially explicit computations allowed more rigorous analysis of these dynamic systems. For example, 3-season operation with a winter shutdown was favored to avoid high greenhouse gas emissions, but economic performance was harmed by underutilized equipment during slow-growth periods. Thus, analysis of algal biofuel pathways must combine spatiotemporal resource assessment, economic analysis, and environmental analysis integrated over many sites when assessing national scale performance.

摘要

成本、排放和资源可用性是通过水热液化 (HTL) 从小球藻生物质生产美国 50 亿加仑/年 (5BGY) 的可再生柴油进行建模的。HTL 模型利用了来自连续 1-L 反应器的数据,包括水相的催化热解气化和 HTL 油的催化加氢处理。结合天气和池塘模拟的生物物理藻类生长模型预测了生物质生产力,允许对生物质生产进行现场和时间预测。5BGY 规模需要在地理和气候上分散的地点。即使缩小到 5BGY,空间和时间变化也会显著减少,但生产力的现场、季节和年际变化会影响经济和环境性能。基于年度平均或峰值生产力的绩效指标是不够的;时间和空间上的明确计算允许对这些动态系统进行更严格的分析。例如,采用三季运行加冬季停机的方式可以避免温室气体排放过高,但在生长缓慢期间设备利用率低会对经济表现造成损害。因此,在评估国家规模的性能时,藻类生物燃料途径的分析必须结合时空资源评估、经济分析和环境分析,涵盖多个地点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验