Suppr超能文献

使用信息论和多层感知器估计直接非线性有效连接性。

Estimation of direct nonlinear effective connectivity using information theory and multilayer perceptron.

作者信息

Khadem Ali, Hossein-Zadeh Gholam-Ali

机构信息

Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran.

Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

出版信息

J Neurosci Methods. 2014 May 30;229:53-67. doi: 10.1016/j.jneumeth.2014.04.008. Epub 2014 Apr 19.

Abstract

BACKGROUND

Despite the variety of effective connectivity measures, few methods can quantify direct nonlinear causal couplings and most of them are not applicable to high-dimensional datasets.

NEW METHOD

In this paper, a novel approach (called βmRMR-MLP-GC) is proposed to estimate direct nonlinear effective connectivity of high-dimensional datasets. βmRMR is used to select a suitable subset of candidate regressors for approximating each neural (here EEG) signal. The multilayer perceptron (MLP) is used for multivariate characterization of EEG signals while the optimum MLP structure is selected using an iterative cross-validation scheme. Finally a causality measure is defined based on Granger Causality (GC) concept to quantify the casual relations among EEG channels.

RESULTS

Applying βmRMR-MLP-GC to high-dimensional simulated datasets with different linear and nonlinear structures yields sensitivity and specificity values higher than 95%. Also, applying it to eyes-closed resting state EEG of six normal subjects in the alpha frequency band yields significant net activity propagations from the posterior to anterior brain regions. This is in accordance with the most previous studies in this field.

COMPARISON WITH EXISTING METHOD(S): βmRMR-MLP-GC is compared with Granger Causality Index, Conditional Granger Causality Index, and Transfer Entropy. It outperforms these methods in terms of sensitivity and specificity in simulated datasets. Also, βmRMR-MLP-GC detects the most number of significant and reproducible Back-to-Front net information flows among the specified brain regions and highlights the posterior brain regions as dominant source of alpha activity propagation.

CONCLUSIONS

βmRMR-MLP-GC provides a novel tool to estimate the direct nonlinear causal networks of high-dimensional datasets.

摘要

背景

尽管有多种有效的连接性测量方法,但很少有方法能够量化直接的非线性因果耦合,并且其中大多数方法不适用于高维数据集。

新方法

本文提出了一种新颖的方法(称为βmRMR-MLP-GC)来估计高维数据集的直接非线性有效连接性。βmRMR用于选择候选回归变量的合适子集,以逼近每个神经(此处为脑电图)信号。多层感知器(MLP)用于对脑电图信号进行多变量表征,同时使用迭代交叉验证方案选择最佳的MLP结构。最后,基于格兰杰因果关系(GC)概念定义一种因果关系测量方法,以量化脑电图通道之间的因果关系。

结果

将βmRMR-MLP-GC应用于具有不同线性和非线性结构的高维模拟数据集时,灵敏度和特异性值均高于95%。此外,将其应用于六个正常受试者闭眼静息状态下α频段的脑电图时,可产生从后脑区域到前脑区域的显著净活动传播。这与该领域以前的大多数研究一致。

与现有方法的比较

将βmRMR-MLP-GC与格兰杰因果关系指数、条件格兰杰因果关系指数和转移熵进行了比较。在模拟数据集中,它在灵敏度和特异性方面优于这些方法。此外,βmRMR-MLP-GC在指定脑区中检测到的显著且可重复的从前到后的净信息流数量最多,并突出显示后脑区域是α活动传播的主要来源。

结论

βmRMR-MLP-GC提供了一种估计高维数据集直接非线性因果网络的新工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验