Suppr超能文献

在活性氧诱导的非凋亡性细胞死亡过程中,PARP-1过度激活与细胞内Ca2+相互升高。

PARP-1 hyperactivation and reciprocal elevations in intracellular Ca2+ during ROS-induced nonapoptotic cell death.

作者信息

Zhang Fengjiao, Xie Ruiye, Munoz Frances M, Lau Serrine S, Monks Terrence J

机构信息

Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721.

Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, Arizona 85721 Department of Pediatrics and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla,CA 92093-0651.

出版信息

Toxicol Sci. 2014 Jul;140(1):118-34. doi: 10.1093/toxsci/kfu073. Epub 2014 Apr 20.

Abstract

The generation of reactive oxygen species (ROS) has been implicated in the pathogenesis of renal ischemia/reperfusion injury, and many other pathological conditions. DNA strand breaks caused by ROS lead to the activation of poly(ADP-ribose)polymerase-1 (PARP-1), the excessive activation of which can result in cell death. We have utilized a model in which 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ), a nephrotoxic and nephrocarcinogenic metabolite of hydroquinone, causes ROS-dependent cell death in human renal proximal tubule epithelial cells (HK-2), to further elucidate the role of PARP-1 in ROS-dependent cell death. TGHQ-induced ROS generation, DNA strand breaks, hyperactivation of PARP-1, rapid depletion of nicotinamide adenine dinucleotide (NAD), elevations in intracellular Ca(2+) concentrations, and subsequent nonapoptotic cell death in both a PARP- and Ca(2+)-dependent manner. Thus, inhibition of PARP-1 with PJ34 completely blocked TGHQ-mediated accumulation of poly(ADP-ribose) polymers and NAD consumption, and delayed HK-2 cell death. In contrast, chelation of intracellular Ca(2+) with BAPTA completely abrogated TGHQ-induced cell death. Ca(2+) chelation also attenuated PARP-1 hyperactivation. Conversely, inhibition of PARP-1 modulated TGHQ-mediated changes in Ca(2+) homeostasis. Interestingly, PARP-1 hyperactivation was not accompanied by the translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus, a process usually associated with PARP-dependent cell death. Thus, pathways coupling PARP-1 hyperactivation to cell death are likely to be context-dependent, and therapeutic strategies designed to target PARP-1 need to recognize such variability. Our studies provide new insights into PARP-1-mediated nonapoptotic cell death, during which PARP-1 hyperactivation and elevations in intracellular Ca(2+) are reciprocally coupled to amplify ROS-induced nonapoptotic cell death.

摘要

活性氧(ROS)的产生与肾缺血/再灌注损伤以及许多其他病理状况的发病机制有关。由ROS引起的DNA链断裂会导致聚(ADP - 核糖)聚合酶 - 1(PARP - 1)的激活,其过度激活会导致细胞死亡。我们利用了一种模型,其中对苯二酚的肾毒性和肾致癌代谢物2,3,5 - 三(谷胱甘肽 - S - 基)对苯二酚(TGHQ)在人肾近端小管上皮细胞(HK - 2)中引起ROS依赖性细胞死亡,以进一步阐明PARP - 1在ROS依赖性细胞死亡中的作用。TGHQ诱导ROS生成、DNA链断裂、PARP - 1过度激活、烟酰胺腺嘌呤二核苷酸(NAD)快速消耗、细胞内Ca(2+)浓度升高,并随后以PARP和Ca(2+)依赖性方式导致非凋亡性细胞死亡。因此,用PJ34抑制PARP - 1完全阻断了TGHQ介导的聚(ADP - 核糖)聚合物的积累和NAD消耗,并延迟了HK - 2细胞死亡。相反,用BAPTA螯合细胞内Ca(2+)完全消除了TGHQ诱导的细胞死亡。Ca(2+)螯合也减弱了PARP - 1的过度激活。相反,抑制PARP - 1调节了TGHQ介导的Ca(2+)稳态变化。有趣的是,PARP - 1过度激活并未伴随着凋亡诱导因子(AIF)从线粒体向细胞核的转位,这一过程通常与PARP依赖性细胞死亡相关。因此,将PARP - 1过度激活与细胞死亡联系起来的途径可能取决于具体情况,旨在靶向PARP - 1的治疗策略需要认识到这种变异性。我们的研究为PARP - 1介导的非凋亡性细胞死亡提供了新的见解,在此过程中,PARP - 1过度激活和细胞内Ca(2+)浓度升高相互耦合,以放大ROS诱导的非凋亡性细胞死亡。

相似文献

1
PARP-1 hyperactivation and reciprocal elevations in intracellular Ca2+ during ROS-induced nonapoptotic cell death.
Toxicol Sci. 2014 Jul;140(1):118-34. doi: 10.1093/toxsci/kfu073. Epub 2014 Apr 20.
3
A dual role for poly(ADP-ribose) polymerase-1 during caspase-dependent apoptosis.
Toxicol Sci. 2012 Jul;128(1):103-14. doi: 10.1093/toxsci/kfs142. Epub 2012 Apr 20.
7
Cell-specific regulation of Nrf2 during ROS-Dependent cell death caused by 2,3,5-tris(glutathion-S-yl)hydroquinone (TGHQ).
Chem Biol Interact. 2019 Apr 1;302:1-10. doi: 10.1016/j.cbi.2019.01.027. Epub 2019 Jan 28.
8
Calcium-dependent modulation of poly(ADP-ribose) polymerase-1 alters cellular metabolism and DNA repair.
J Biol Chem. 2006 Nov 3;281(44):33684-96. doi: 10.1074/jbc.M603678200. Epub 2006 Aug 17.
9
Caspase inhibition augments Dichlorvos-induced dopaminergic neuronal cell death by increasing ROS production and PARP1 activation.
Neuroscience. 2014 Jan 31;258:1-15. doi: 10.1016/j.neuroscience.2013.11.004. Epub 2013 Nov 11.
10
Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion.
Free Radic Biol Med. 2005 Jul 1;39(1):81-90. doi: 10.1016/j.freeradbiomed.2005.03.021. Epub 2005 Apr 8.

引用本文的文献

1
Evaluation of pyroptosis-associated genes in endometrial cancer utilizing a 101-combination machine learning framework and multi-omics data.
Front Med (Lausanne). 2025 Jun 5;12:1590405. doi: 10.3389/fmed.2025.1590405. eCollection 2025.
2
Synergistic ROS Reduction Through the Co-Inhibition of BRAF and p38 MAPK Ameliorates Senescence.
Antioxidants (Basel). 2024 Nov 28;13(12):1465. doi: 10.3390/antiox13121465.
3
Ozone therapy mitigates parthanatos after ischemic stroke.
Biol Res. 2024 Oct 5;57(1):71. doi: 10.1186/s40659-024-00547-5.
4
Molecular mechanisms of cell death by parthanatos: More questions than answers.
Genet Mol Biol. 2024 Aug 30;47Suppl 1(Suppl 1):e20230357. doi: 10.1590/1678-4685-GMB-2023-0357. eCollection 2024.
5
The Role of Molecular and Cellular Aging Pathways on Age-Related Hearing Loss.
Int J Mol Sci. 2024 Sep 7;25(17):9705. doi: 10.3390/ijms25179705.
6
Exploring the role of parthanatos in CNS injury: Molecular insights and therapeutic approaches.
J Adv Res. 2025 Apr;70:271-286. doi: 10.1016/j.jare.2024.04.031. Epub 2024 May 3.
8
ROS-Activated TRPM2 Channel: Calcium Homeostasis in Cardiovascular/renal System and Speculation in Cardiorenal Syndrome.
Cardiovasc Drugs Ther. 2025 Jun;39(3):615-631. doi: 10.1007/s10557-023-07531-3. Epub 2023 Dec 18.
9
cGMP Signaling in Photoreceptor Degeneration.
Int J Mol Sci. 2023 Jul 7;24(13):11200. doi: 10.3390/ijms241311200.
10
Targeting Mitochondrial Oxidative Stress as a Strategy to Treat Aging and Age-Related Diseases.
Antioxidants (Basel). 2023 Apr 15;12(4):934. doi: 10.3390/antiox12040934.

本文引用的文献

1
Poly(ADP-ribose): PARadigms and PARadoxes.
Mol Aspects Med. 2013 Dec;34(6):1046-65. doi: 10.1016/j.mam.2012.12.010. Epub 2013 Jan 2.
2
A dual role for poly(ADP-ribose) polymerase-1 during caspase-dependent apoptosis.
Toxicol Sci. 2012 Jul;128(1):103-14. doi: 10.1093/toxsci/kfs142. Epub 2012 Apr 20.
3
Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death.
Cell Mol Life Sci. 2011 Apr;68(8):1455-66. doi: 10.1007/s00018-010-0533-1. Epub 2010 Sep 29.
4
gammaH2AX: a sensitive molecular marker of DNA damage and repair.
Leukemia. 2010 Apr;24(4):679-86. doi: 10.1038/leu.2010.6. Epub 2010 Feb 4.
5
Mitochondrial and nuclear cross talk in cell death: parthanatos.
Ann N Y Acad Sci. 2008 Dec;1147:233-41. doi: 10.1196/annals.1427.014.
6
Expansion and evolution of cell death programmes.
Nat Rev Mol Cell Biol. 2008 May;9(5):378-90. doi: 10.1038/nrm2393.
7
NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences.
Antioxid Redox Signal. 2008 Feb;10(2):179-206. doi: 10.1089/ars.2007.1672.
8
Necrostatin: a potentially novel cardioprotective agent?
Cardiovasc Drugs Ther. 2007 Aug;21(4):227-33. doi: 10.1007/s10557-007-6035-1. Epub 2007 Jul 31.
9
Mitochondria and Ca(2+) signaling: old guests, new functions.
Pflugers Arch. 2007 Dec;455(3):375-96. doi: 10.1007/s00424-007-0296-1. Epub 2007 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验