Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
Development. 2014 May;141(9):1794-804. doi: 10.1242/dev.101048.
During organogenesis, various molecular and physical signals are orchestrated in space and time to sculpt multiple cell types into functional tissues and organs. The complex and dynamic nature of the process has hindered studies aimed at delineating morphogenetic mechanisms in vivo, particularly in mammals. Recent demonstrations of stem cell-driven tissue assembly in culture offer a powerful new tool for modeling and dissecting organogenesis. However, despite the highly organotypic nature of stem cell-derived tissues, substantial differences set them apart from their in vivo counterparts, probably owing to the altered microenvironment in which they reside and the lack of mesenchymal influences. Advances in the biomaterials and microtechnology fields have, for example, afforded a high degree of spatiotemporal control over the cellular microenvironment, making it possible to interrogate the effects of individual microenvironmental components in a modular fashion and rapidly identify organ-specific synthetic culture models. Hence, bioengineering approaches promise to bridge the gap between stem cell-driven tissue formation in culture and morphogenesis in vivo, offering mechanistic insight into organogenesis and unveiling powerful new models for drug discovery, as well as strategies for tissue regeneration in the clinic. We draw on several examples of stem cell-derived organoids to illustrate how bioengineering can contribute to tissue formation ex vivo. We also discuss the challenges that lie ahead and potential ways to overcome them.
在器官发生过程中,各种分子和物理信号在空间和时间上被协调,将多种细胞类型塑造成具有功能的组织和器官。该过程的复杂性和动态性阻碍了旨在体内描绘形态发生机制的研究,特别是在哺乳动物中。最近在培养物中展示的干细胞驱动的组织组装为建模和剖析器官发生提供了一种强大的新工具。然而,尽管干细胞衍生的组织具有高度的器官型,但它们与体内对应物存在显著差异,这可能归因于它们所处的微环境改变以及缺乏间质影响。例如,生物材料和微技术领域的进步为细胞微环境提供了高度的时空控制,使得可以以模块化的方式研究单个微环境成分的影响,并快速确定特定于器官的合成培养模型。因此,生物工程方法有望弥合培养物中干细胞驱动的组织形成与体内形态发生之间的差距,为器官发生提供机制见解,并揭示用于药物发现的强大新模型以及临床组织再生的策略。我们借鉴了几个由干细胞衍生的类器官的例子来说明生物工程如何有助于体外组织形成。我们还讨论了未来的挑战和克服这些挑战的潜在方法。