Suppr超能文献

创伤性视神经病变预测:基于入院时面部 CT 表现的风险评分。

Traumatic optic neuropathy prediction after blunt facial trauma: derivation of a risk score based on facial CT findings at admission.

机构信息

From the Department of Diagnostic Radiology and Nuclear Medicine, R. Adams Cowley Shock Trauma Center (U.K.B., K.S., S.E.M.), Department of Ophthalmology and Visual Sciences (L.K., R.K.S.), and Department of Radiology (S.E.M., J.K.), University of Maryland Medical Center, 22 S Greene St, Baltimore, MD 21201; Institute of Radiology, San Matteo Medical Center, University of Pavia, Lombardy, Italy (G.V.d.B.); Department of Ophthalmology and Visual Sciences, Havener Eye Institute, Ohio State University, Columbus, Ohio (E.G.); Department of Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (N.S.); and Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Md (K.R.S.).

出版信息

Radiology. 2014 Sep;272(3):824-31. doi: 10.1148/radiol.14131873. Epub 2014 Apr 20.

Abstract

PURPOSE

To determine the specific facial computed tomographic (CT) findings that can be used to predict traumatic optic neuropathy (TON) in patients with blunt craniofacial trauma and propose a scoring system to identify patients at highest risk of TON.

MATERIALS AND METHODS

This study was compliant with HIPAA, and permission was obtained from the institutional review board. Facial CT examination findings in 637 consecutive patients with a history of blunt facial trauma were evaluated retrospectively. The following CT variables were evaluated: midfacial fractures, extraconal hematoma, intraconal hematoma, hematoma along the optic nerve, hematoma along the posterior globe, optic canal fracture, nerve impingement by optic canal fracture fragment, extraconal emphysema, and intraconal emphysema. A prediction model was derived by using regression analysis, followed by receiver operating characteristic analysis to assess the diagnostic performance. To examine the degree of overfitting of the prediction model, a k-fold cross-validation procedure (k = 5) was performed. The ability of the cross-validated model to allow prediction of TON was examined by comparing the mean area under the receiver operating characteristic curve (AUC) from cross-validations with that obtained from the observations used to create the model.

RESULTS

The five CT variables with significance as predictors were intraconal hematoma (odds ratio, 12.73; 95% confidence interval [CI]: 5.16, 31.42; P < .001), intraconal emphysema (odds ratio, 5.21; 95% CI: 2.03, 13.36; P = .001), optic canal fracture (odds ratio, 4.45; 95% CI: 1.91, 10.35; P = .001), hematoma along the posterior globe (odds ratio, 0.326; 95% CI: 0.111, 0.958; P = .041), and extraconal hematoma (odds ratio, 2.36; 95% CI: 1.03, 5.41; P = .042). The AUC was 0.818 (95% CI: 0.734, 0.902) for the proposed model based on the observations used to create the model and 0.812 (95% CI: 0.723, 0.9) after cross-validation, excluding substantial overfitting of the model.

CONCLUSION

The risk model developed may help radiologists suggest the possibility of TON and prioritize ophthalmology consults. However, future external validation of this prediction model is necessary.

摘要

目的

确定特定的面部计算机断层扫描(CT)表现,可用于预测钝性头面部创伤患者的创伤性视神经病变(TON),并提出一种评分系统来识别TON 风险最高的患者。

材料和方法

本研究符合 HIPAA 规定,并获得了机构审查委员会的许可。回顾性分析了 637 例连续有钝性面部创伤史患者的面部 CT 检查结果。评估了以下 CT 变量:中面部骨折、眶外血肿、眶内血肿、视神经周围血肿、后球内血肿、视神经管骨折、视神经管骨折碎片压迫神经、眶外气肿、眶内气肿。使用回归分析得出预测模型,然后进行接收者操作特征分析以评估诊断性能。为了检查预测模型的过度拟合程度,进行了 k 折交叉验证程序(k = 5)。通过比较交叉验证得到的平均接收者操作特征曲线下面积(AUC)与用于创建模型的观察结果得到的 AUC,来检查交叉验证模型预测 TON 的能力。

结果

作为预测因子有统计学意义的五个 CT 变量是眶内血肿(比值比,12.73;95%置信区间[CI]:5.16,31.42;P<.001)、眶内气肿(比值比,5.21;95%CI:2.03,13.36;P=.001)、视神经管骨折(比值比,4.45;95%CI:1.91,10.35;P=.001)、后球内血肿(比值比,0.326;95%CI:0.111,0.958;P=.041)和眶外血肿(比值比,2.36;95%CI:1.03,5.41;P=.042)。基于用于创建模型的观察结果,所提出的模型的 AUC 为 0.818(95%CI:0.734,0.902),交叉验证后为 0.812(95%CI:0.723,0.900),排除了模型的过度拟合。

结论

所开发的风险模型可能有助于放射科医生提示 TON 的可能性,并优先进行眼科会诊。然而,需要对该预测模型进行进一步的外部验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验