Sašek Vladimír, Janda Martin, Delage Elise, Puyaubert Juliette, Guivarc'h Anne, López Maseda Encarnación, Dobrev Petre I, Caius José, Bóka Károly, Valentová Olga, Burketová Lenka, Zachowski Alain, Ruelland Eric
Institute of Experimental Botany, Academy of Sciences of Czech Republic, Prague, 165 02, Czech Republic.
New Phytol. 2014 Aug;203(3):805-16. doi: 10.1111/nph.12822. Epub 2014 Apr 24.
Phospholipids have recently been found to be integral elements of hormone signalling pathways. An Arabidopsis thaliana double mutant in two type III phosphatidylinositol-4-kinases (PI4Ks), pi4kIIIβ1β2, displays a stunted rosette growth. The causal link between PI4K activity and growth is unknown. Using microarray analysis, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and multiple phytohormone analysis by LC-MS we investigated the mechanism responsible for the pi4kIIIβ1β2 phenotype. The pi4kIIIβ1β2 mutant accumulated a high concentration of salicylic acid (SA), constitutively expressed SA marker genes including PR-1, and was more resistant to Pseudomonas syringae. pi4kIIIβ1β2 was crossed with SA signalling mutants eds1 and npr1 and SA biosynthesis mutant sid2 and NahG. The dwarf phenotype of pi4kIIIβ1β2 rosettes was suppressed in all four triple mutants. Whereas eds1 pi4kIIIβ1β2, sid2 pi4kIIIβ1β2 and NahG pi4kIIIβ1β2 had similar amounts of SA as the wild-type (WT), npr1pi4kIIIβ1β2 had more SA than pi4kIIIβ1β2 despite being less dwarfed. This indicates that PI4KIIIβ1 and PI4KIIIβ2 are genetically upstream of EDS1 and need functional SA biosynthesis and perception through NPR1 to express the dwarf phenotype. The slow root growth phenotype of pi4kIIIβ1β2 was not suppressed in any of the triple mutants. The pi4kIIIβ1β2 mutations together cause constitutive activation of SA signalling that is responsible for the dwarf rosette phenotype but not for the short root phenotype.
最近发现磷脂是激素信号通路的重要组成部分。拟南芥中两种III型磷脂酰肌醇-4-激酶(PI4K)的双突变体pi4kIIIβ1β2,其莲座叶生长发育不良。PI4K活性与生长之间的因果关系尚不清楚。我们使用微阵列分析、定量逆转录聚合酶链反应(RT-qPCR)以及通过液相色谱-质谱联用进行多种植物激素分析,来研究导致pi4kIIIβ1β2表型的机制。pi4kIIIβ1β2突变体积累了高浓度的水杨酸(SA),组成型表达包括PR-1在内的SA标记基因,并且对丁香假单胞菌更具抗性。将pi4kIIIβ1β2与SA信号突变体eds1和npr1以及SA生物合成突变体sid2和NahG进行杂交。在所有四个三突变体中,pi4kIIIβ1β2莲座叶的矮化表型均受到抑制。尽管eds1 pi4kIIIβ1β2、sid2 pi4kIIIβ1β2和NahG pi4kIIIβ1β2的SA含量与野生型(WT)相似,但npr1pi4kIIIβ1β2的SA含量比pi4kIIIβ1β2更多,尽管其矮化程度较低。这表明PI4KIIIβ1和PI4KIIIβ2在遗传学上位于EDS1的上游,并且需要通过NPR1进行功能性SA生物合成和感知才能表达矮化表型。pi4kIIIβ1β2的根系生长缓慢表型在任何一个三突变体中均未受到抑制。pi4kIIIβ1β2突变共同导致SA信号的组成型激活,这是莲座叶矮化表型的原因,但不是根系短小表型的原因。