Yuan Chun-Wei, Khouri Leila, Grothe Benedikt, Leibold Christian
Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
Department Biologie II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel.
PLoS One. 2014 Apr 23;9(4):e95705. doi: 10.1371/journal.pone.0095705. eCollection 2014.
Neurons in sensory pathways exhibit a vast multitude of adaptation behaviors, which are assumed to aid the encoding of temporal stimulus features and provide the basis for a population code in higher brain areas. Here we study the transition to a population code for auditory gap stimuli both in neurophysiological recordings and in a computational network model. Independent component analysis (ICA) of experimental data from the inferior colliculus of Mongolian gerbils reveals that the network encodes different gap sizes primarily with its population firing rate within 30 ms after the presentation of the gap, where longer gap size evokes higher network activity. We then developed a computational model to investigate possible mechanisms of how to generate the population code for gaps. Phenomenological (ICA) and functional (discrimination performance) analyses of our simulated networks show that the experimentally observed patterns may result from heterogeneous adaptation, where adaptation provides gap detection at the single neuron level and neuronal heterogeneity ensures discriminable population codes for the whole range of gap sizes in the input. Furthermore, our work suggests that network recurrence additionally enhances the network's ability to provide discriminable population patterns.
感觉通路中的神经元表现出大量的适应行为,这些行为被认为有助于对时间刺激特征进行编码,并为更高脑区的群体编码提供基础。在这里,我们在神经生理学记录和计算网络模型中研究了听觉间隙刺激向群体编码的转变。对蒙古沙鼠下丘实验数据的独立成分分析(ICA)表明,该网络在间隙呈现后30毫秒内主要通过其群体放电率对不同的间隙大小进行编码,间隙越长,引发的网络活动越高。然后,我们开发了一个计算模型来研究生成间隙群体编码的可能机制。对我们模拟网络的现象学(ICA)和功能(辨别性能)分析表明,实验观察到的模式可能源于异质性适应,其中适应在单个神经元水平上提供间隙检测,而神经元异质性确保了输入中整个间隙大小范围内可辨别的群体编码。此外,我们的工作表明,网络递归进一步增强了网络提供可辨别群体模式的能力。