Suppr超能文献

在行为猕猴的下丘脑中,神经元对声音统计数据的适应并不会降低掩蔽噪声的有效性。

Neuronal adaptation to sound statistics in the inferior colliculus of behaving macaques does not reduce the effectiveness of the masking noise.

机构信息

Department of Hearing and Speech Sciences, Vanderbilt University Medical Center , Nashville, Tennessee.

出版信息

J Neurophysiol. 2018 Dec 1;120(6):2819-2833. doi: 10.1152/jn.00875.2017. Epub 2018 Sep 26.

Abstract

The detectability of target sounds embedded within noisy backgrounds is affected by the regularities that summarize acoustic sceneries. Previous studies suggested that the dynamic range of neurons in the inferior colliculus (IC) of anesthetized guinea pigs shifts toward the mean sound pressure level in irregular acoustic environments. Yet, it is unclear how this neuronal adaptation processes may influence the effectiveness of sounds as a masker, both behaviorally and in terms of neuronal encoding. To answer this question, we measured the neural response of IC neurons while macaque monkeys performed a Go/No-Go tone detection task. Macaques detected a 50-ms tone that was either simultaneously gated with a burst of noise or embedded within a continuous noise background, whose levels were randomly sampled (every 50 ms) from a probability distribution. The mean of the distribution matched the level of the gated burst of noise. Psychometric and IC neurometric thresholds to tones did not differ between the two masking conditions. However, the neuronal firing rate versus level function was significantly affected by the temporal characteristics of the noise masker. Simultaneously gated noise caused higher baseline responses and greater dynamic range compression compared with noise distribution. The slopes of psychometric and neurometric functions were significantly shallower for higher variance distributions, suggesting that neuronal sensitivity might change with the variability of the sound. Our results suggest that the adaptive response of IC neurons to sound regularities does not affect the effectiveness of the noise-masking signal, which remains invariant to surrounding noise amplitudes. NEW & NOTEWORTHY Auditory neurons adapt to the statistics of sound levels in the acoustic scene. However, it is still unclear to what extent such adaptation influences the effectiveness of the stimulus as a masker. Our study represents the first attempt to investigate how the adaptation to the statistics of masking stimuli may be related to the effectiveness of masking, and to the single-unit encoding of the midbrain auditory neurons in behaving animals.

摘要

目标声音在嘈杂背景中的可检测性受概括声音场景的规律影响。先前的研究表明,麻醉豚鼠下丘脑中神经元的动态范围在不规则的声音环境中向平均声压级转移。然而,尚不清楚这种神经元适应过程如何在行为和神经元编码方面影响声音作为掩蔽物的有效性。为了回答这个问题,我们测量了猕猴在执行 Go/No-Go 音调检测任务时的下丘神经元的神经反应。猴子检测到一个 50ms 的音调,该音调要么与噪声突发同时门控,要么嵌入连续噪声背景中,其水平是从概率分布中随机采样的(每 50ms 一次)。分布的平均值与门控噪声突发的水平匹配。在两种掩蔽条件下,音调的心理物理和 IC 神经测量阈值没有差异。然而,神经元的放电率与水平函数受到噪声掩蔽的时间特征的显著影响。与噪声分布相比,同时门控噪声导致更高的基线响应和更大的动态范围压缩。对于更高方差分布,心理物理和神经测量函数的斜率明显更浅,这表明神经元的敏感性可能随声音的变化而变化。我们的结果表明,IC 神经元对声音规律的适应反应不会影响噪声掩蔽信号的有效性,该信号对周围噪声幅度保持不变。新的和值得注意的听觉神经元适应声音水平在声音场景中的统计。然而,这种适应对刺激作为掩蔽物的有效性的影响程度仍不清楚。我们的研究代表了首次尝试调查对掩蔽刺激的统计的适应如何与掩蔽的有效性以及行为动物的中脑听觉神经元的单细胞编码相关。

相似文献

2
Foreground stimuli and task engagement enhance neuronal adaptation to background noise in the inferior colliculus of macaques.
J Neurophysiol. 2020 Nov 1;124(5):1315-1326. doi: 10.1152/jn.00153.2020. Epub 2020 Sep 16.
3
Spatial and temporal disparity in signals and maskers affects signal detection in non-human primates.
Hear Res. 2017 Feb;344:1-12. doi: 10.1016/j.heares.2016.10.013. Epub 2016 Oct 19.
5
Pattern-sensitive neurons reveal encoding of complex auditory regularities in the rat inferior colliculus.
Neuroimage. 2019 Jan 1;184:889-900. doi: 10.1016/j.neuroimage.2018.10.012. Epub 2018 Oct 5.
8
Neural correlates of binaural masking level difference in the inferior colliculus of the barn owl (Tyto alba).
Eur J Neurosci. 2010 Aug;32(4):606-18. doi: 10.1111/j.1460-9568.2010.07313.x. Epub 2010 Jul 6.

引用本文的文献

1
Mechanisms of Tone-in-Noise Encoding in the Inferior Colliculus.
J Neurosci. 2025 Jun 4;45(23):e1907242025. doi: 10.1523/JNEUROSCI.1907-24.2025.
2
Hierarchical differences in the encoding of amplitude modulation in the subcortical auditory system of awake nonhuman primates.
J Neurophysiol. 2024 Sep 1;132(3):1098-1114. doi: 10.1152/jn.00329.2024. Epub 2024 Aug 14.
3
Slow and steady: auditory features for discriminating animal vocalizations.
bioRxiv. 2024 Jul 2:2024.06.20.599962. doi: 10.1101/2024.06.20.599962.
4
Dynamics of cortical contrast adaptation predict perception of signals in noise.
Nat Commun. 2023 Aug 9;14(1):4817. doi: 10.1038/s41467-023-40477-6.
5
Adaptation in auditory processing.
Physiol Rev. 2023 Apr 1;103(2):1025-1058. doi: 10.1152/physrev.00011.2022. Epub 2022 Sep 1.
6
An assessment of ambient noise and other environmental variables in a nonhuman primate housing facility.
Lab Anim (NY). 2022 Aug;51(8):219-226. doi: 10.1038/s41684-022-01017-9. Epub 2022 Jul 27.
7
Hearing in Complex Environments: Auditory Gain Control, Attention, and Hearing Loss.
Front Neurosci. 2022 Feb 10;16:799787. doi: 10.3389/fnins.2022.799787. eCollection 2022.
8
Three psychophysical metrics of auditory temporal integration in macaques.
J Acoust Soc Am. 2021 Oct;150(4):3176. doi: 10.1121/10.0006658.
9
Responses to diotic tone-in-noise stimuli in the inferior colliculus: stimulus envelope and neural fluctuation cues.
Hear Res. 2021 Sep 15;409:108328. doi: 10.1016/j.heares.2021.108328. Epub 2021 Aug 2.
10
Midbrain-Level Neural Correlates of Behavioral Tone-in-Noise Detection: Dependence on Energy and Envelope Cues.
J Neurosci. 2021 Aug 25;41(34):7206-7223. doi: 10.1523/JNEUROSCI.3103-20.2021. Epub 2021 Jul 15.

本文引用的文献

1
Contribution of spiking activity in the primary auditory cortex to detection in noise.
J Neurophysiol. 2017 Dec 1;118(6):3118-3131. doi: 10.1152/jn.00521.2017. Epub 2017 Aug 30.
2
Spatial and temporal disparity in signals and maskers affects signal detection in non-human primates.
Hear Res. 2017 Feb;344:1-12. doi: 10.1016/j.heares.2016.10.013. Epub 2016 Oct 19.
3
Causal contribution of primate auditory cortex to auditory perceptual decision-making.
Nat Neurosci. 2016 Jan;19(1):135-42. doi: 10.1038/nn.4195. Epub 2015 Dec 14.
4
Speech Coding in the Brain: Representation of Vowel Formants by Midbrain Neurons Tuned to Sound Fluctuations.
eNeuro. 2015 Jul 20;2(4). doi: 10.1523/ENEURO.0004-15.2015. eCollection 2015 Jul-Aug.
5
Detection of modulated tones in modulated noise by non-human primates.
J Assoc Res Otolaryngol. 2014 Oct;15(5):801-21. doi: 10.1007/s10162-014-0467-7. Epub 2014 Jun 5.
6
Constructing noise-invariant representations of sound in the auditory pathway.
PLoS Biol. 2013 Nov;11(11):e1001710. doi: 10.1371/journal.pbio.1001710. Epub 2013 Nov 12.
7
Detection of tones and their modification by noise in nonhuman primates.
J Assoc Res Otolaryngol. 2013 Aug;14(4):547-60. doi: 10.1007/s10162-013-0384-1. Epub 2013 Mar 21.
8
Spectrotemporal contrast kernels for neurons in primary auditory cortex.
J Neurosci. 2012 Aug 15;32(33):11271-84. doi: 10.1523/JNEUROSCI.1715-12.2012.
9
Power-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics.
J Neurosci. 2010 Aug 4;30(31):10380-90. doi: 10.1523/JNEUROSCI.0647-10.2010.
10
Adaptation to stimulus statistics in the perception and neural representation of auditory space.
Neuron. 2010 Jun 24;66(6):937-48. doi: 10.1016/j.neuron.2010.05.018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验