Suppr超能文献

典型EF手型环的预测与分析及Ca²⁺结合亲和力的定性评估

Prediction and analysis of canonical EF hand loop and qualitative estimation of Ca²⁺ binding affinity.

作者信息

Mazumder Mohit, Padhan Narendra, Bhattacharya Alok, Gourinath Samudrala

机构信息

School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.

School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.

出版信息

PLoS One. 2014 Apr 23;9(4):e96202. doi: 10.1371/journal.pone.0096202. eCollection 2014.

Abstract

The diversity of functions carried out by EF hand-containing calcium-binding proteins is due to various interactions made by these proteins as well as the range of affinity levels for Ca²⁺ displayed by them. However, accurate methods are not available for prediction of binding affinities. Here, amino acid patterns of canonical EF hand sequences obtained from available crystal structures were used to develop a classifier that distinguishes Ca²⁺-binding loops and non Ca²⁺-binding regions with 100% accuracy. To investigate further, we performed a proteome-wide prediction for E. histolytica, and classified known EF-hand proteins. We compared our results with published methods on the E. histolytica proteome scan, and demonstrated our method to be more specific and accurate for predicting potential canonical Ca²⁺-binding loops. Furthermore, we annotated canonical EF-hand motifs and classified them based on their Ca²⁺-binding affinities using support vector machines. Using a novel method generated from position-specific scoring metrics and then tested against three different experimentally derived EF-hand-motif datasets, predictions of Ca²⁺-binding affinities were between 87 and 90% accurate. Our results show that the tool described here is capable of predicting Ca²⁺-binding affinity constants of EF-hand proteins.

摘要

含EF手型结构的钙结合蛋白所执行的功能多样性,归因于这些蛋白所形成的各种相互作用以及它们对Ca²⁺所表现出的亲和力水平范围。然而,目前尚无准确的方法可用于预测结合亲和力。在此,利用从现有晶体结构中获得的典型EF手型序列的氨基酸模式,开发了一种分类器,该分类器能够以100%的准确率区分Ca²⁺结合环和非Ca²⁺结合区域。为了进一步研究,我们对溶组织内阿米巴进行了全蛋白质组预测,并对已知的EF手型蛋白进行了分类。我们将我们的结果与已发表的关于溶组织内阿米巴蛋白质组扫描的方法进行了比较,并证明我们的方法在预测潜在的典型Ca²⁺结合环方面更具特异性和准确性。此外,我们注释了典型的EF手型基序,并使用支持向量机根据它们的Ca²⁺结合亲和力对其进行了分类。使用从位置特异性评分指标生成的一种新方法,然后针对三个不同的实验衍生的EF手型基序数据集进行测试,Ca²⁺结合亲和力的预测准确率在87%至90%之间。我们的结果表明,此处描述的工具能够预测EF手型蛋白的Ca²⁺结合亲和常数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验