Suppr超能文献

通过结合环建模与机器学习预测钙结合位点。

Prediction of calcium-binding sites by combining loop-modeling with machine learning.

作者信息

Liu Tianyun, Altman Russ B

机构信息

Department of Genetics, Stanford University, Stanford, CA, USA.

出版信息

BMC Struct Biol. 2009 Dec 11;9:72. doi: 10.1186/1472-6807-9-72.

Abstract

BACKGROUND

Protein ligand-binding sites in the apo state exhibit structural flexibility. This flexibility often frustrates methods for structure-based recognition of these sites because it leads to the absence of electron density for these critical regions, particularly when they are in surface loops. Methods for recognizing functional sites in these missing loops would be useful for recovering additional functional information.

RESULTS

We report a hybrid approach for recognizing calcium-binding sites in disordered regions. Our approach combines loop modeling with a machine learning method (FEATURE) for structure-based site recognition. For validation, we compared the performance of our method on known calcium-binding sites for which there are both holo and apo structures. When loops in the apo structures are rebuilt using modeling methods, FEATURE identifies 14 out of 20 crystallographically proven calcium-binding sites. It only recognizes 7 out of 20 calcium-binding sites in the initial apo crystal structures.We applied our method to unstructured loops in proteins from SCOP families known to bind calcium in order to discover potential cryptic calcium binding sites. We built 2745 missing loops and evaluated them for potential calcium binding. We made 102 predictions of calcium-binding sites. Ten predictions are consistent with independent experimental verifications. We found indirect experimental evidence for 14 other predictions. The remaining 78 predictions are novel predictions, some with intriguing potential biological significance. In particular, we see an enrichment of beta-sheet folds with predicted calcium binding sites in the connecting loops on the surface that may be important for calcium-mediated function switches.

CONCLUSION

Protein crystal structures are a potentially rich source of functional information. When loops are missing in these structures, we may be losing important information about binding sites and active sites. We have shown that limited loop modeling (e.g. loops less than 17 residues) combined with pattern matching algorithms can recover functions and propose putative conformations associated with these functions.

摘要

背景

无配体状态下的蛋白质配体结合位点具有结构灵活性。这种灵活性常常使基于结构识别这些位点的方法受挫,因为它导致这些关键区域缺乏电子密度,尤其是当它们位于表面环中时。识别这些缺失环中功能位点的方法对于恢复额外的功能信息将是有用的。

结果

我们报告了一种用于识别无序区域中钙结合位点的混合方法。我们的方法将环建模与基于结构的位点识别的机器学习方法(FEATURE)相结合。为了进行验证,我们在既有全配体结构又有无配体结构的已知钙结合位点上比较了我们方法的性能。当使用建模方法重建无配体结构中的环时,FEATURE在20个经晶体学验证的钙结合位点中识别出14个。在初始的无配体晶体结构中,它仅识别出20个钙结合位点中的7个。我们将我们的方法应用于已知结合钙的SCOP家族蛋白质中的无结构环,以发现潜在的隐秘钙结合位点。我们构建了2745个缺失环并评估它们潜在的钙结合能力。我们对钙结合位点进行了102次预测。其中10次预测与独立的实验验证结果一致。我们为另外14次预测找到了间接实验证据。其余78次预测是新的预测,其中一些具有有趣的潜在生物学意义。特别是,我们发现在表面连接环中具有预测钙结合位点的β折叠富集,这可能对钙介导的功能转换很重要。

结论

蛋白质晶体结构是功能信息的潜在丰富来源。当这些结构中的环缺失时,我们可能会丢失有关结合位点和活性位点的重要信息。我们已经表明,有限的环建模(例如小于17个残基的环)与模式匹配算法相结合可以恢复功能并提出与这些功能相关的假定构象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b1c/2808310/004e0af28b17/1472-6807-9-72-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验