Suppr超能文献

层状钙钛矿(Sr,La)3Fe2O(7-δ)中氧空位的形成及离子迁移机制

Oxygen vacancy formation and the ion migration mechanism in layered perovskite (Sr,La)3Fe2O(7-δ).

作者信息

Kagomiya Isao, Jimbo Keigo, Kakimoto Ken-ichi, Nakayama Masanobu, Masson Olivier

机构信息

Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

出版信息

Phys Chem Chem Phys. 2014 Jun 14;16(22):10875-82. doi: 10.1039/c4cp00736k.

Abstract

Metal oxides are widely used in devices such as sensors, fuel cells, and oxygen permeation membranes. Understanding the oxide ion migration mechanism would provide fundamental insights into the relationships between the structure and properties such as ionic conductivity. The Ruddlesden-Popper perovskite (Sr,La)n+1(Fe,Co)nO3n+1 (n = 2) has characteristic oxygen permeation and ion conduction properties, resulting from the layered perovskite structure. To elucidate the ion migration mechanism in Sr2.46La0.54Fe2O7-δ (SLF) we used a combination of experimental techniques [X-ray powder diffraction (XRPD) and enthalpy investigations of the oxygen vacancy formation reaction] and computational techniques [the bond valence sum (BVS) approach and ab initio density functional theory (DFT)]. The structural analyses of SLF by XRPD and DFT agreed well. They showed that the oxygen vacancies in SLF are located at the O1 oxygen site, which is on the vertex shared by two FeO6 octahedra in the perovskite layer. Enthalpy of the oxygen vacancy formation changed at 830 °C. This is similar to the ionic conduction behavior reported for Sr3Fe2O7. The XRPD study indicates that the host structural framework did not change with temperature, while the oxygen/vacancy arrangement in SLF did change at 830 °C. The BVS and DFT studies suggested a change in the ion migration pathway, in which the ion migration through O1 sites becomes more important at temperatures higher than 830 °C.

摘要

金属氧化物广泛应用于传感器、燃料电池和氧渗透膜等器件中。了解氧化物离子迁移机制将为诸如离子电导率等结构与性能之间的关系提供基本见解。Ruddlesden-Popper钙钛矿(Sr,La)n+1(Fe,Co)nO3n+1(n = 2)具有独特的氧渗透和离子传导特性,这源于其层状钙钛矿结构。为了阐明Sr2.46La0.54Fe2O7-δ(SLF)中的离子迁移机制,我们结合了实验技术[X射线粉末衍射(XRPD)和氧空位形成反应的焓研究]和计算技术[键价和(BVS)方法和从头算密度泛函理论(DFT)]。通过XRPD和DFT对SLF进行的结构分析结果吻合良好。结果表明,SLF中的氧空位位于O1氧位点,该位点位于钙钛矿层中两个FeO6八面体共享的顶点上。氧空位形成的焓在830℃时发生变化。这与报道的Sr3Fe2O7的离子传导行为相似。XRPD研究表明,主体结构框架不随温度变化,而SLF中的氧/空位排列在830℃时确实发生了变化。BVS和DFT研究表明离子迁移途径发生了变化,其中在高于830℃的温度下,通过O1位点的离子迁移变得更加重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验