Suppr超能文献

钙钛矿型固体氧化物燃料电池材料中的氧传输:量子力学的见解。

Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics.

机构信息

Department of Chemical Sciences, University of Naples Federico II , Naples 80126, Italy.

出版信息

Acc Chem Res. 2014 Nov 18;47(11):3340-8. doi: 10.1021/ar4003174. Epub 2014 Jun 27.

Abstract

CONSPECTUS

Global advances in industrialization are precipitating increasingly rapid consumption of fossil fuel resources and heightened levels of atmospheric CO2. World sustainability requires viable sources of renewable energy and its efficient use. First-principles quantum mechanics (QM) studies can help guide developments in energy technologies by characterizing complex material properties and predicting reaction mechanisms at the atomic scale. QM can provide unbiased, qualitative guidelines for experimentally tailoring materials for energy applications. This Account primarily reviews our recent QM studies of electrode materials for solid oxide fuel cells (SOFCs), a promising technology for clean, efficient power generation. SOFCs presently must operate at very high temperatures to allow transport of oxygen ions and electrons through solid-state electrolytes and electrodes. High temperatures, however, engender slow startup times and accelerate material degradation. SOFC technologies need cathode and anode materials that function well at lower temperatures, which have been realized with mixed ion-electron conductor (MIEC) materials. Unfortunately, the complexity of MIECs has inhibited the rational tailoring of improved SOFC materials. Here, we gather theoretically obtained insights into oxygen ion conductivity in two classes of perovskite-type materials for SOFC applications: the conventional La1-xSrxMO3 family (M = Cr, Mn, Fe, Co) and the new, promising class of Sr2Fe2-xMoxO6 materials. Using density functional theory + U (DFT+U) with U-J values obtained from ab initio theory, we have characterized the accompanying electronic structures for the two processes that govern ionic diffusion in these materials: (i) oxygen vacancy formation and (ii) vacancy-mediated oxygen migration. We show how the corresponding macroscopic oxygen diffusion coefficient can be accurately obtained in terms of microscopic quantities calculated with first-principles QM. We find that the oxygen vacancy formation energy is a robust descriptor for evaluating oxide ion transport properties. We also find it has a direct relationship with (i) the transition metal-oxygen bond strength and (ii) the extent to which electrons left behind by the departing oxygen delocalize onto the oxygen sublattice. Design principles from our QM results may guide further development of perovskite-based MIEC materials for SOFC applications.

摘要

概述

全球工业化的进步正在加速消耗化石燃料资源,并导致大气中二氧化碳水平升高。世界的可持续性需要可再生能源的可行来源及其有效利用。第一性原理量子力学(QM)研究可以通过描述复杂的材料性质和预测原子尺度的反应机制来帮助指导能源技术的发展。QM 可以为实验定制用于能源应用的材料提供无偏见的定性指导。本账户主要回顾了我们最近对用于固体氧化物燃料电池(SOFC)的电极材料的 QM 研究,SOFC 是一种用于清洁、高效发电的有前途的技术。SOFC 目前必须在非常高的温度下运行,以允许氧离子和电子通过固态电解质和电极传输。然而,高温会导致启动时间缓慢,并加速材料降解。SOFC 技术需要在较低温度下性能良好的阴极和阳极材料,这已经通过混合离子-电子导体(MIEC)材料实现。不幸的是,MIEC 的复杂性抑制了对改进的 SOFC 材料的合理定制。在这里,我们汇集了理论上获得的对两种用于 SOFC 应用的钙钛矿型材料的氧离子电导率的见解:传统的 La1-xSrxMO3 系列(M = Cr、Mn、Fe、Co)和新的、有前途的 Sr2Fe2-xMoxO6 材料。我们使用密度泛函理论+U(DFT+U),并使用从头理论获得 U-J 值,对控制这些材料中离子扩散的两个过程(i)氧空位形成和(ii)空位介导的氧迁移的伴随电子结构进行了特征描述。我们展示了如何根据第一性原理 QM 计算的微观量准确获得相应的宏观氧扩散系数。我们发现氧空位形成能是评估氧化物离子输运性质的稳健描述符。我们还发现它与(i)过渡金属-氧键强度和(ii)离去氧留下的电子在氧亚晶格上离域的程度直接相关。我们的 QM 结果的设计原则可能指导进一步开发用于 SOFC 应用的基于钙钛矿的 MIEC 材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验