Suppr超能文献

基于学习的半自主控制器,用于在搜索受害者的同时对未知灾难场景进行机器人探索。

A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims.

出版信息

IEEE Trans Cybern. 2014 Dec;44(12):2719-32. doi: 10.1109/TCYB.2014.2314294. Epub 2014 Apr 18.

Abstract

Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.

摘要

半自主控制方案可以通过允许人类操作员与救援机器人合作并共享导航、探索和受害者识别等任务,来解决灾难环境中远程操作和完全自主机器人控制救援机器人的局限性。在本文中,我们提出了一种独特的基于分层强化学习的半自主控制架构,用于在杂乱和未知的城市搜索和救援(USAR)环境中运行的救援机器人。控制器的目的是使救援机器人能够在环境中不断从自身经验中学习,从而提高其在探索未知灾难场景方面的整体性能。控制器中集成了一种基于方向的探索技术,通过对区域和这些区域内的瓦砾堆进行分类,扩大机器人的搜索区域。在 USAR 类似环境中的模拟和物理实验验证了所提出的基于 HRL 的半自主控制器对具有不同大小和不同类型配置的未知杂乱场景的鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验