Suppr超能文献

光学捕获活细胞的精确位置跟踪。

Accurate position tracking of optically trapped live cells.

作者信息

McAlinden Niall, Glass David G, Millington Owain R, Wright Amanda J

机构信息

Institute of Photonics, University of Strathclyde, Wolfson Centre, Glasgow, G4 0NW, UK.

Institute of Photonics, University of Strathclyde, Wolfson Centre, Glasgow, G4 0NW, UK ; Strathclyde Institute of Pharmacy and Biomedical Sciences Glasgow, G4 0RE, UK.

出版信息

Biomed Opt Express. 2014 Mar 3;5(4):1026-37. doi: 10.1364/BOE.5.001026. eCollection 2014 Apr 1.

Abstract

Optical trapping is a powerful tool in Life Science research and is becoming common place in many microscopy laboratories and facilities. There is a growing need to directly trap the cells of interest rather than introduce beads to the sample that can affect the fundamental biological functions of the sample and impact on the very properties the user wishes to observe and measure. However, instabilities while tracking large inhomogeneous objects, such as cells, can make tracking position, calibrating trap strength and making reliable measurements challenging. These instabilities often manifest themselves as cell roll or re-orientation and can occur as a result of viscous drag forces and thermal convection, as well as spontaneously due to Brownian forces. In this paper we discuss and mathematically model the cause of this roll and present several experimental approaches for tackling these issues, including using a novel beam profile consisting of three closely spaced traps and tracking a trapped object by analysing fluorescence images. The approaches presented here trap T cells which form part of the adaptive immune response system, but in principle can be applied to a wide range of samples where the size and inhomogeneous nature of the trapped object can hinder particle tracking experiments.

摘要

光镊是生命科学研究中的一种强大工具,在许多显微镜实验室和设施中已变得很常见。越来越需要直接捕获感兴趣的细胞,而不是向样品中引入珠子,因为珠子会影响样品的基本生物学功能,并对用户希望观察和测量的特性产生影响。然而,在跟踪大型不均匀物体(如细胞)时的不稳定性,会使跟踪位置、校准陷阱强度以及进行可靠测量变得具有挑战性。这些不稳定性通常表现为细胞滚动或重新定向,可能是由于粘性阻力和热对流导致的,也可能是由于布朗力自发产生的。在本文中,我们讨论了这种滚动的原因并建立了数学模型,并提出了几种解决这些问题的实验方法,包括使用由三个紧密间隔的陷阱组成的新型光束轮廓,以及通过分析荧光图像来跟踪被捕获的物体。这里介绍的方法捕获了构成适应性免疫反应系统一部分的T细胞,但原则上可以应用于广泛的样品,在这些样品中,被捕获物体的大小和不均匀性质可能会阻碍粒子跟踪实验。

相似文献

1
Accurate position tracking of optically trapped live cells.
Biomed Opt Express. 2014 Mar 3;5(4):1026-37. doi: 10.1364/BOE.5.001026. eCollection 2014 Apr 1.
3
Microscale Diffractive Lenses Integrated into Microfluidic Devices for Size-Selective Optical Trapping of Particles.
Anal Chem. 2024 Jul 23;96(29):11845-11852. doi: 10.1021/acs.analchem.4c01521. Epub 2024 Jul 8.
4
Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
Nat Nanotechnol. 2020 Nov;15(11):908-913. doi: 10.1038/s41565-020-0760-z. Epub 2020 Aug 31.
5
Construction and calibration of an optical trap on a fluorescence optical microscope.
Nat Protoc. 2007;2(12):3226-38. doi: 10.1038/nprot.2007.446.
8
Trapping volume control in optical tweezers using cylindrical vector beams.
Opt Lett. 2013 Jan 1;38(1):28-30. doi: 10.1364/OL.38.000028.
9
High-Performance Image-Based Measurements of Biological Forces and Interactions in a Dual Optical Trap.
ACS Nano. 2018 Dec 26;12(12):11963-11974. doi: 10.1021/acsnano.8b03679. Epub 2018 Nov 20.
10
Particle tracking stereomicroscopy in optical tweezers: control of trap shape.
Opt Express. 2010 May 24;18(11):11785-90. doi: 10.1364/OE.18.011785.

引用本文的文献

1
Photon-efficient optical tweezers via wavefront shaping.
Sci Adv. 2024 Jul 5;10(27):eadi7792. doi: 10.1126/sciadv.adi7792.
2
Recent advances in critical nodes of embryo engineering technology.
Theranostics. 2021 May 25;11(15):7391-7424. doi: 10.7150/thno.58799. eCollection 2021.
3
Trapping and Manipulation of Single Cells in Crowded Environments.
Front Bioeng Biotechnol. 2020 May 8;8:422. doi: 10.3389/fbioe.2020.00422. eCollection 2020.
4
Multiview microscopy of single cells through microstructure-based indirect optical manipulation.
Biomed Opt Express. 2020 Jan 16;11(2):945-962. doi: 10.1364/BOE.379233. eCollection 2020 Feb 1.
5
A minimally invasive optical trapping system to understand cellular interactions at onset of an immune response.
PLoS One. 2017 Dec 8;12(12):e0188581. doi: 10.1371/journal.pone.0188581. eCollection 2017.
6
Effect of red light on optically trapped spermatozoa.
Biomed Opt Express. 2017 Aug 23;8(9):4200-4205. doi: 10.1364/BOE.8.004200. eCollection 2017 Sep 1.
8
Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells.
Biomed Opt Express. 2015 Dec 7;7(1):45-56. doi: 10.1364/BOE.7.000045. eCollection 2016 Jan 1.

本文引用的文献

1
Motion analysis of optically trapped particles and cells using 2D Fourier analysis.
Opt Express. 2012 Jan 30;20(3):1953-62. doi: 10.1364/OE.20.001953.
2
Position clamping of optically trapped microscopic non-spherical probes.
Opt Express. 2011 Oct 10;19(21):20622-7. doi: 10.1364/OE.19.020622.
3
Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies.
Lab Chip. 2011 Nov 7;11(21):3656-62. doi: 10.1039/c1lc20653b. Epub 2011 Sep 14.
4
Holographic optical tweezers and their relevance to lab on chip devices.
Lab Chip. 2011 Apr 7;11(7):1196-205. doi: 10.1039/c0lc00526f. Epub 2011 Feb 15.
6
High-speed high-resolution imaging of intercellular immune synapses using optical tweezers.
Biophys J. 2008 Nov 15;95(10):L66-8. doi: 10.1529/biophysj.108.143198. Epub 2008 Aug 22.
8
Optical trapping.
Rev Sci Instrum. 2004 Sep;75(9):2787-809. doi: 10.1063/1.1785844.
10
Quantitative comparison of algorithms for tracking single fluorescent particles.
Biophys J. 2001 Oct;81(4):2378-88. doi: 10.1016/S0006-3495(01)75884-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验