Weghoff Marie Charlotte, Bertsch Johannes, Müller Volker
Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
Environ Microbiol. 2015 Mar;17(3):670-7. doi: 10.1111/1462-2920.12493. Epub 2014 May 21.
Lactate is a common substrate for major groups of strictly anaerobic bacteria, but the biochemistry and bioenergetics of lactate oxidation is obscure. The high redox potential of the pyruvate/lactate pair of E0 ' = -190 mV excludes direct NAD(+) reduction (E0 ' = -320 mV). To identify the hitherto unknown electron acceptor, we have purified the lactate dehydrogenase (LDH) from the strictly anaerobic, acetogenic bacterium Acetobacterium woodii. The LDH forms a stable complex with an electron-transferring flavoprotein (Etf) that exhibited NAD(+) reduction only when reduced ferredoxin (Fd(2-) ) was present. Biochemical analyses revealed that the LDH/Etf complex of A. woodii uses flavin-based electron confurcation to drive endergonic lactate oxidation with NAD(+) as oxidant at the expense of simultaneous exergonic electron flow from reduced ferredoxin (E0 ' ≈ -500 mV) to NAD(+) according to: lactate + Fd(2-) + 2 NAD(+) → pyruvate + Fd + 2 NADH. The reduced Fd(2-) is regenerated from NADH by a sequence of events that involves conversion of chemical (ATP) to electrochemical ( Δ μ ˜ Na + ) and finally redox energy (Fd(2-) from NADH) via reversed electron transport catalysed by the Rnf complex. Inspection of genomes revealed that this metabolic scenario for lactate oxidation may also apply to many other anaerobes.
乳酸是严格厌氧细菌主要类群的常见底物,但乳酸氧化的生物化学和生物能量学尚不清楚。丙酮酸/乳酸对的高氧化还原电位E0 '=-190 mV排除了直接还原NAD⁺(E0 '=-320 mV)的可能性。为了鉴定迄今未知的电子受体,我们从严格厌氧的产乙酸细菌伍氏乙酸杆菌中纯化了乳酸脱氢酶(LDH)。LDH与一种电子传递黄素蛋白(Etf)形成稳定复合物,该复合物仅在存在还原型铁氧还蛋白(Fd²⁻)时才表现出NAD⁺还原。生化分析表明,伍氏乙酸杆菌的LDH/Etf复合物利用基于黄素的电子分配,以NAD⁺作为氧化剂驱动吸能的乳酸氧化,代价是同时发生从还原型铁氧还蛋白(E0 '≈ -500 mV)到NAD⁺的放能电子流,反应式如下:乳酸 + Fd²⁻ + 2NAD⁺ → 丙酮酸 + Fd + 2NADH。还原型Fd²⁻通过一系列事件从NADH再生,这些事件涉及化学能(ATP)转化为电化学能(Δμ˜Na⁺),最终通过Rnf复合物催化的逆向电子传递转化为氧化还原能(来自NADH的Fd²⁻)。对基因组的检查表明,这种乳酸氧化的代谢模式可能也适用于许多其他厌氧菌。