Suppr超能文献

用于研究损伤机制的膝关节有限元模型:开发与验证

Finite element model of the knee for investigation of injury mechanisms: development and validation.

作者信息

Kiapour Ali, Kiapour Ata M, Kaul Vikas, Quatman Carmen E, Wordeman Samuel C, Hewett Timothy E, Demetropoulos Constantine K, Goel Vijay K

出版信息

J Biomech Eng. 2014 Jan;136(1):011002. doi: 10.1115/1.4025692.

Abstract

Multiple computational models have been developed to study knee biomechanics. However, the majority of these models are mainly validated against a limited range of loading conditions and/or do not include sufficient details of the critical anatomical structures within the joint. Due to the multifactorial dynamic nature of knee injuries, anatomic finite element (FE) models validated against multiple factors under a broad range of loading conditions are necessary. This study presents a validated FE model of the lower extremity with an anatomically accurate representation of the knee joint. The model was validated against tibiofemoral kinematics, ligaments strain/force, and articular cartilage pressure data measured directly from static, quasi-static, and dynamic cadaveric experiments. Strong correlations were observed between model predictions and experimental data (r > 0.8 and p < 0.0005 for all comparisons). FE predictions showed low deviations (root-mean-square (RMS) error) from average experimental data under all modes of static and quasi-static loading, falling within 2.5 deg of tibiofemoral rotation, 1% of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) strains, 17 N of ACL load, and 1 mm of tibiofemoral center of pressure. Similarly, the FE model was able to accurately predict tibiofemoral kinematics and ACL and MCL strains during simulated bipedal landings (dynamic loading). In addition to minimal deviation from direct cadaveric measurements, all model predictions fell within 95% confidence intervals of the average experimental data. Agreement between model predictions and experimental data demonstrates the ability of the developed model to predict the kinematics of the human knee joint as well as the complex, nonuniform stress and strain fields that occur in biological soft tissue. Such a model will facilitate the in-depth understanding of a multitude of potential knee injury mechanisms with special emphasis on ACL injury.

摘要

已经开发了多种计算模型来研究膝关节生物力学。然而,这些模型中的大多数主要是针对有限范围的加载条件进行验证的,和/或没有包括关节内关键解剖结构的足够细节。由于膝关节损伤具有多因素动态特性,因此需要在广泛的加载条件下针对多种因素进行验证的解剖有限元(FE)模型。本研究提出了一种下肢有限元模型,该模型对膝关节进行了精确的解剖学表示。该模型根据直接从静态、准静态和动态尸体实验测量的胫股运动学、韧带应变/力和关节软骨压力数据进行了验证。在模型预测和实验数据之间观察到很强的相关性(所有比较的r > 0.8且p < 0.0005)。在所有静态和准静态加载模式下,有限元预测与平均实验数据的偏差(均方根(RMS)误差)较低,胫股旋转在2.5°以内,前交叉韧带(ACL)和内侧副韧带(MCL)应变在1%以内,ACL负荷在17 N以内,胫股压力中心在1 mm以内。同样,有限元模型能够准确预测模拟双足落地(动态加载)期间的胫股运动学以及ACL和MCL应变。除了与直接尸体测量的偏差最小外,所有模型预测都落在平均实验数据的95%置信区间内。模型预测与实验数据之间的一致性表明,所开发的模型能够预测人体膝关节的运动学以及生物软组织中出现的复杂、不均匀的应力和应变场。这样的模型将有助于深入理解多种潜在的膝关节损伤机制,尤其侧重于ACL损伤。

相似文献

4
Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading.
J Orthop Res. 2003 Nov;21(6):1098-106. doi: 10.1016/S0736-0266(03)00113-X.
7
Frontal Plane Loading Characteristics of Medial Collateral Ligament Strain Concurrent With Anterior Cruciate Ligament Failure.
Am J Sports Med. 2019 Jul;47(9):2143-2150. doi: 10.1177/0363546519854286. Epub 2019 Jun 20.
8
Knee Abduction Affects Greater Magnitude of Change in ACL and MCL Strains Than Matched Internal Tibial Rotation In Vitro.
Clin Orthop Relat Res. 2017 Oct;475(10):2385-2396. doi: 10.1007/s11999-017-5367-9.
10
Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms.
Am J Sports Med. 2013 Feb;41(2):385-95. doi: 10.1177/0363546512465167. Epub 2012 Nov 9.

引用本文的文献

1
Validating subject-specific knee models from measurements.
Front Bioeng Biotechnol. 2025 Aug 14;13:1554836. doi: 10.3389/fbioe.2025.1554836. eCollection 2025.
2
Normative Knee Range of Motion for Children.
Life (Basel). 2025 Jun 24;15(7):1000. doi: 10.3390/life15071000.
8
Computational study of extrinsic factors affecting ACL strain during single-leg jump landing.
BMC Musculoskelet Disord. 2024 Apr 23;25(1):318. doi: 10.1186/s12891-024-07372-7.
9
Validation and evaluation of subject-specific finite element models of the pediatric knee.
Sci Rep. 2023 Oct 26;13(1):18328. doi: 10.1038/s41598-023-45408-5.

本文引用的文献

1
The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study.
Appl Math (Irvine). 2014 May;4(5A):91-97. doi: 10.4236/am.2013.45A011.
2
Diagnostic value of knee arthrometry in the prediction of anterior cruciate ligament strain during landing.
Am J Sports Med. 2014 Feb;42(2):312-9. doi: 10.1177/0363546513509961. Epub 2013 Nov 25.
4
Clinically relevant injury patterns after an anterior cruciate ligament injury provide insight into injury mechanisms.
Am J Sports Med. 2013 Feb;41(2):385-95. doi: 10.1177/0363546512465167. Epub 2012 Nov 9.
5
Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses.
J Biomech. 2012 Aug 9;45(12):2149-56. doi: 10.1016/j.jbiomech.2012.05.040. Epub 2012 Jun 20.
6
Dynamic finite element knee simulation for evaluation of knee replacement mechanics.
J Biomech. 2012 Feb 2;45(3):474-83. doi: 10.1016/j.jbiomech.2011.11.052. Epub 2011 Dec 30.
7
The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury: a cadaveric study.
Am J Sports Med. 2012 Mar;40(3):568-73. doi: 10.1177/0363546511430204. Epub 2011 Dec 14.
10
Cartilage pressure distributions provide a footprint to define female anterior cruciate ligament injury mechanisms.
Am J Sports Med. 2011 Aug;39(8):1706-13. doi: 10.1177/0363546511400980. Epub 2011 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验