Miller Anne-Frances
Department of Chemistry, University of Kentucky, 505 Rose St, Lexington, KY, 40506-0055, USA,
Methods Mol Biol. 2014;1146:307-40. doi: 10.1007/978-1-4939-0452-5_12.
Why apply solid-state NMR (SSNMR) to flavins and flavoproteins? NMR provides information on an atom-specific basis about chemical functionality, structure, proximity to other groups, and dynamics of the system. Thus, it has become indispensable to the study of chemicals, materials, catalysts, and biomolecules. It is no surprise then that NMR has a great deal to offer in the study of flavins and flavoenzymes. In general, their catalytic or electron-transfer activity resides essentially in the flavin, a molecule eminently accessible by NMR. However, the specific reactivity displayed depends on a host of subtle interactions whereby the protein biases and reshapes the flavin's propensities to activate it for one reaction while suppressing other aspects of this cofactor's prodigious repertoire (Massey et al., J Biol Chem 244:3999-4006, 1969; Müller, Z Naturforsch 27B:1023-1026, 1972; Joosten and van Berkel, Curr Opin Struct Biol 11:195-202, 2007). Thus, we are fascinated to learn about how the flavin cofactor of one enzyme is, and is not, like the flavin cofactor of another. In what follows, we describe how the capabilities of SSNMR can help and are beginning to bear fruit in this exciting endeavor.
为何要将固态核磁共振(SSNMR)应用于黄素和黄素蛋白?核磁共振能在原子层面提供有关化学官能团、结构、与其他基团的接近程度以及系统动力学的信息。因此,它已成为化学、材料、催化剂及生物分子研究中不可或缺的工具。那么,核磁共振在黄素和黄素酶的研究中能发挥重要作用也就不足为奇了。一般来说,它们的催化或电子转移活性主要存在于黄素中,而黄素是一种极易通过核磁共振检测的分子。然而,所表现出的特定反应活性取决于一系列微妙的相互作用,通过这些相互作用,蛋白质会偏向并重塑黄素的倾向,使其在一种反应中被激活,同时抑制这种辅因子众多功能的其他方面(梅西等人,《生物化学杂志》第244卷:3999 - 4006页,1969年;米勒,《自然科学研究》第27B卷:1023 - 1026页,1972年;约斯滕和范·贝克尔,《结构生物学当前观点》第11卷:195 - 202页,2007年)。因此,我们热衷于了解一种酶的黄素辅因子与另一种酶的黄素辅因子有何异同。接下来,我们将描述固态核磁共振的能力如何在这一令人兴奋的研究中提供帮助并开始取得成果。