Suppr超能文献

在通过重组近交系映射数量性状基因座时忽略多基因背景的警示。

A cautionary note on ignoring polygenic background when mapping quantitative trait loci via recombinant congenic strains.

机构信息

Department of Mathematics and Statistics, Memorial University St. John's, NL, Canada.

出版信息

Front Genet. 2014 Apr 2;5:68. doi: 10.3389/fgene.2014.00068. eCollection 2014.

Abstract

In gene mapping, it is common to test for association between the phenotype and the genotype at a large number of loci, i.e., the same response variable is used repeatedly to test a large number of non-independent and non-nested hypotheses. In many of these genetic problems, the underlying model is a mixed model consistent of one or very few major genes concurrently with a genetic background effect, usually thought as of polygenic nature and, consequently, modeled through a random effects term with a well-defined covariance structure dependent upon the kinship between individuals. Either because the interest lies only on the major genes or to simplify the analysis, it is habitual to drop the random effects term and use a simple linear regression model, sometimes complemented with testing via resampling as an attempt to minimize the consequences of this practice. Here, it is shown that dropping the random effects term has not only extreme negative effects on the control of the type I error rate, but it is also unlikely to be fixed by resampling because, whenever the mixed model is correct, this practice does not allow to meet some basic requirements of resampling in a gene mapping context. Furthermore, simulations show that the type I error rates when the random term is ignored can be unacceptably high. As an alternative, this paper introduces a new bootstrap procedure to handle the specific case of mapping by using recombinant congenic strains under a linear mixed model. A simulation study showed that the type I error rates of the proposed procedure are very close to the nominal ones, although they tend to be slightly inflated for larger values of the random effects variance. Overall, this paper illustrates the extent of the adverse consequences of ignoring random effects term due to polygenic factors while testing for genetic linkage and warns us of potential modeling issues whenever simple linear regression for a major gene yields multiple significant linkage peaks.

摘要

在基因映射中,通常会在大量基因座上测试表型与基因型之间的关联,即重复使用相同的响应变量来测试大量非独立且非嵌套的假设。在许多这些遗传问题中,基础模型是一个混合模型,由一个或少数几个主要基因与遗传背景效应一致,通常被认为是多基因性质的,因此通过具有明确协方差结构的随机效应项进行建模,该协方差结构取决于个体之间的亲缘关系。由于仅对主要基因感兴趣,或者为了简化分析,通常会忽略随机效应项并使用简单的线性回归模型,有时通过重采样进行测试,以尝试最小化这种做法的后果。在这里,结果表明忽略随机效应项不仅对控制 I 型错误率有极端的负面影响,而且通过重采样也不太可能固定,因为只要混合模型是正确的,这种做法就不允许在基因映射环境中满足重采样的某些基本要求。此外,模拟表明,忽略随机项时的 I 型错误率可能高得不可接受。作为替代方案,本文提出了一种新的自举程序,该程序在使用重组近交系的线性混合模型下处理基因映射的特殊情况。模拟研究表明,所提出的程序的 I 型错误率非常接近名义值,尽管对于较大的随机效应方差值,它们趋于略微膨胀。总体而言,本文说明了在测试遗传连锁时忽略多基因因素引起的随机效应项的不利后果的程度,并警告我们,在简单线性回归为主要基因产生多个显著连锁峰时,可能存在潜在的建模问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/691a/3980105/1f8ccbb9ab4a/fgene-05-00068-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验