European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy and Physics Department, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland.
European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy and National Institute of Optics (CNR-INO), Largo Fermi 6, 50125 Florence, Italy.
Phys Rev Lett. 2014 Apr 11;112(14):143901. doi: 10.1103/PhysRevLett.112.143901. Epub 2014 Apr 7.
Structural correlations in disordered media are known to affect significantly the propagation of waves. In this Letter, we theoretically investigate the transport and localization of light in 2D photonic structures with short-range correlated disorder. The problem is tackled semianalytically using the Baus-Colot model for the structure factor of correlated media and a modified independent scattering approximation. We find that short-range correlations make it possible to easily tune the transport mean free path by more than a factor of 2 and the related localization length over several orders of magnitude. This trend is confirmed by numerical finite-difference time-domain calculations. This study therefore shows that disorder engineering can offer fine control over light transport and localization in planar geometries, which may open new opportunities in both fundamental and applied photonics research.
在无序介质中,结构相关性已知会显著影响波的传播。在这封信件中,我们从理论上研究了具有短程相关无序的二维光子结构中的光输运和局域化。使用相关介质结构因子的 Baus-Colot 模型和改进的独立散射近似,我们从半解析角度解决了这个问题。我们发现,短程相关性使得通过超过两倍的因子轻松调节输运平均自由程和相关局域化长度成为可能,跨越几个数量级。这一趋势得到了数值有限差分时域计算的证实。因此,这项研究表明,无序工程可以在平面几何中对光输运和局域化进行精细控制,这可能为基础和应用光子学研究开辟新的机会。