Slavov Nikolai, Budnik Bogdan A, Schwab David, Airoldi Edoardo M, van Oudenaarden Alexander
Departments of Physics and Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Statistics and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
Department of Statistics and FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
Cell Rep. 2014 May 8;7(3):705-14. doi: 10.1016/j.celrep.2014.03.057. Epub 2014 Apr 24.
Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quantifying O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, and stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions of the tricarboxylic-acid cycle (providing NADH for respiration) and of mitochondrial folate-mediated NADPH production (required for oxidative defense). The findings demonstrate that exponential growth can represent not a single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the energy demands associated with respiratory metabolism and stress survival.
在有足够氧气支持呼吸的情况下发酵葡萄糖,即所谓的有氧糖酵解,被认为能使生长速率最大化。我们观察到在指数生长期有氧糖酵解增加,这表明有氧糖酵解具有额外的生理作用。我们通过在以恒定速率进行的九次倍增过程中量化氧气消耗、二氧化碳产生、氨基酸、信使核糖核酸、蛋白质、翻译后修饰以及应激敏感性,来研究酵母分批培养中的此类作用。在此过程中,细胞维持恒定的生物量产生速率,但呼吸速率和ATP产生速率降低,同时其应激抗性也降低。随着呼吸速率降低,催化三羧酸循环(为呼吸提供NADH)中速率决定反应的酶水平以及线粒体叶酸介导的NADPH产生(氧化防御所需)水平也随之降低。这些发现表明指数生长期并非代表单一的代谢/生理状态,而是一系列不断变化的状态,并且有氧糖酵解可以降低与呼吸代谢和应激存活相关的能量需求。