Suppr超能文献

刺猬信号通路/Notch信号通路与转化生长因子-β在人腹主动脉瘤中的差异表达

Differential expression of Hedgehog/Notch and transforming growth factor-β in human abdominal aortic aneurysms.

作者信息

Doyle Adam J, Redmond Eileen M, Gillespie David L, Knight Peter A, Cullen John P, Cahill Paul A, Morrow David J

机构信息

Department of Surgery, University of Rochester Medical Center, Rochester, NY.

Heart and Vascular Center, South Coast Health Systems, Fall River/New Bedford, Mass.

出版信息

J Vasc Surg. 2015 Aug;62(2):464-70. doi: 10.1016/j.jvs.2014.02.053. Epub 2014 Apr 24.

Abstract

OBJECTIVE

The molecular mechanisms leading to the development of abdominal aortic aneurysms (AAAs) remain poorly understood. The aim of this study was to determine the expression of Sonic Hedgehog (SHh), transforming growth factor β (TGF-β), and Notch signaling components in human aneurysmal and nonaneurysmal aorta in vivo.

METHODS

Paired tissue samples were obtained from aneurysmal and nonaneurysmal (control) segments of the aortic wall of eight patients with suitable anatomy undergoing open repair of infrarenal AAAs. Protein and messenger RNA (mRNA) expression levels were determined by Western blot and quantitative real-time polymerase chain reaction analysis.

RESULTS

Aneurysm development resulted in a significant reduction in vascular smooth muscle (vSMC) differentiation genes α-actin and SMC22α at both mRNA and protein levels. In parallel experiments, an 80.0% ± 15% reduction in SHh protein expression was observed in aneurysmal tissue compared with control. SHh and Ptc-1 mRNA levels were also significantly decreased, by 82.0% ± 10% and 75.0% ± 5%, respectively, in aneurysmal tissue compared with nonaneurysmal control tissue. Similarly, there was a 50.0% ± 9% and 60.0% ± 4% reduction in Notch receptor 1 intracellular domain and Hrt-2 protein expression, respectively, in addition to significant reductions in Notch 1, Notch ligand Delta like 4, and Hrt-2 mRNA expression in aneurysmal tissue compared with nonaneurysmal tissue. There was no change in Hrt-1 expression observed in aneurysmal tissue compared with control. In parallel experiments, we found a 2.2 ± 0.2-fold and a 5.6 ± 2.2-fold increase in TGF-β mRNA and protein expression, respectively, in aneurysmal tissue compared with nonaneurysmal tissue. In vitro, Hedgehog signaling inhibition with cyclopamine in human aortic SMCs resulted in decreased Hedgehog/Notch signaling component and vSMC differentiation gene expression. Moreover, cyclopamine significantly increased TGF-β1 mRNA expression by 2.6 ± 0.9-fold.

CONCLUSIONS

These results suggest that SHh/Notch and TGF-β signaling are differentially regulated in aneurysmal tissue compared with nonaneurysmal tissue. Changes in these signaling pathways and the resulting changes in vSMC content may play a causative role in the development of AAAs.

摘要

目的

导致腹主动脉瘤(AAA)发生发展的分子机制仍未完全明确。本研究旨在确定人动脉瘤性和非动脉瘤性主动脉中 Sonic Hedgehog(SHh)、转化生长因子β(TGF-β)及 Notch 信号通路相关成分的体内表达情况。

方法

从 8 例接受肾下腹主动脉瘤开放修复且解剖结构合适的患者的主动脉壁动脉瘤段和非动脉瘤段(对照)获取配对组织样本。通过蛋白质印迹法和定量实时聚合酶链反应分析确定蛋白质和信使核糖核酸(mRNA)的表达水平。

结果

动脉瘤形成导致血管平滑肌(vSMC)分化基因α-肌动蛋白和 SMC22α在 mRNA 和蛋白质水平均显著降低。在平行实验中,与对照相比,动脉瘤组织中 SHh 蛋白表达降低了 80.0%±15%。与非动脉瘤对照组织相比,动脉瘤组织中 SHh 和 Ptc-1 mRNA 水平也分别显著降低了 82.0%±10%和 75.0%±5%。同样,与非动脉瘤组织相比,动脉瘤组织中 Notch 受体 1 胞内结构域和 Hrt-2 蛋白表达分别降低了 50.0%±9%和 60.0%±4%,此外,Notch 1、Notch 配体 Delta like 4 和 Hrt-2 mRNA 表达也显著降低。与对照相比,未观察到动脉瘤组织中 Hrt-1 表达有变化。在平行实验中,与非动脉瘤组织相比,我们发现动脉瘤组织中 TGF-β mRNA 和蛋白质表达分别增加了 2.2±0.2 倍和 5.6±2.2 倍。在体外,用环杷明抑制人主动脉平滑肌细胞中的 Hedgehog 信号通路导致 Hedgehog/Notch 信号通路相关成分及 vSMC 分化基因表达降低。此外,环杷明显著增加 TGF-β1 mRNA 表达 2.6±0.9 倍。

结论

这些结果表明,与非动脉瘤组织相比,动脉瘤组织中 SHh/Notch 和 TGF-β信号通路受到不同调节。这些信号通路的变化以及由此导致的 vSMC 含量变化可能在 AAA 的发生发展中起因果作用。

相似文献

1
Differential expression of Hedgehog/Notch and transforming growth factor-β in human abdominal aortic aneurysms.
J Vasc Surg. 2015 Aug;62(2):464-70. doi: 10.1016/j.jvs.2014.02.053. Epub 2014 Apr 24.
3
Interleukin-1 beta induces differential gene expression in aortic smooth muscle cells.
J Vasc Surg. 1994 Nov;20(5):774-84; discussion 784-6. doi: 10.1016/s0741-5214(94)70165-2.
4
Sonic Hedgehog induces Notch target gene expression in vascular smooth muscle cells via VEGF-A.
Arterioscler Thromb Vasc Biol. 2009 Jul;29(7):1112-8. doi: 10.1161/ATVBAHA.109.186890. Epub 2009 Apr 30.
5
Overexpression of transforming growth factor beta1 in smooth muscle cells of human abdominal aortic aneurysm.
Eur J Vasc Endovasc Surg. 2003 Jun;25(6):540-5. doi: 10.1053/ejvs.2002.1857.
7
Microvascular retinal endothelial and pericyte cell apoptosis in vitro: role of hedgehog and Notch signaling.
Invest Ophthalmol Vis Sci. 2011 Jun 23;52(7):4472-83. doi: 10.1167/iovs.10-7061.
8
TGF-β (Transforming Growth Factor-β) Signaling Protects the Thoracic and Abdominal Aorta From Angiotensin II-Induced Pathology by Distinct Mechanisms.
Arterioscler Thromb Vasc Biol. 2017 Nov;37(11):2102-2113. doi: 10.1161/ATVBAHA.117.309401. Epub 2017 Jul 20.
9
Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome.
Arterioscler Thromb Vasc Biol. 2015 Apr;35(4):960-72. doi: 10.1161/ATVBAHA.114.304412. Epub 2015 Jan 15.

引用本文的文献

1
Olfactory Receptors and Aortic Aneurysm: Review of Disease Pathways.
J Clin Med. 2024 Dec 19;13(24):7778. doi: 10.3390/jcm13247778.
2
O304 alleviates abdominal aortic aneurysm formation via AMPK/mTOR/MMP pathway activation.
Front Pharmacol. 2024 Nov 29;15:1457817. doi: 10.3389/fphar.2024.1457817. eCollection 2024.
3
The role of long non-coding RNA in abdominal aortic aneurysm.
Front Genet. 2023 Mar 15;14:1153899. doi: 10.3389/fgene.2023.1153899. eCollection 2023.
4
The mechanism and therapy of aortic aneurysms.
Signal Transduct Target Ther. 2023 Feb 3;8(1):55. doi: 10.1038/s41392-023-01325-7.
5
6
Fibromuscular Dysplasia and Abdominal Aortic Aneurysms Are Dimorphic Sex-Specific Diseases With Shared Complex Genetic Architecture.
Circ Genom Precis Med. 2022 Dec;15(6):e003496. doi: 10.1161/CIRCGEN.121.003496. Epub 2022 Nov 14.
7
Adventitial Fibroblasts in Aortic Aneurysm: Unraveling Pathogenic Contributions to Vascular Disease.
Diagnostics (Basel). 2022 Mar 31;12(4):871. doi: 10.3390/diagnostics12040871.
9
The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections.
Eur J Clin Invest. 2022 Apr;52(4):e13697. doi: 10.1111/eci.13697. Epub 2021 Nov 21.
10
Critical Roles of Balanced T Helper 9 Cells and Regulatory T Cells in Allergic Airway Inflammation and Tumor Immunity.
J Immunol Res. 2021 Mar 1;2021:8816055. doi: 10.1155/2021/8816055. eCollection 2021.

本文引用的文献

1
Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling.
PLoS One. 2014 Jan 8;9(1):e84122. doi: 10.1371/journal.pone.0084122. eCollection 2014.
2
Inhibition of patched-1 prevents injury-induced neointimal hyperplasia.
Arterioscler Thromb Vasc Biol. 2013 Aug;33(8):1960-4. doi: 10.1161/ATVBAHA.113.301843. Epub 2013 Jun 13.
4
Transforming growth factor-β and abdominal aortic aneurysms.
Cardiovasc Pathol. 2013 Mar-Apr;22(2):126-32. doi: 10.1016/j.carpath.2012.07.005. Epub 2012 Sep 6.
5
Downregulation of transforming growth factor, beta receptor 2 and Notch signaling pathway in human abdominal aortic aneurysm.
Atherosclerosis. 2012 Apr;221(2):383-6. doi: 10.1016/j.atherosclerosis.2012.01.004. Epub 2012 Jan 9.
6
The Murine Angiotensin II-Induced Abdominal Aortic Aneurysm Model: Rupture Risk and Inflammatory Progression Patterns.
Front Pharmacol. 2010 Jul 14;1:9. doi: 10.3389/fphar.2010.00009. eCollection 2010.
7
TGF-β signaling in aortic aneurysm: another round of controversy.
J Genet Genomics. 2010 Sep;37(9):583-91. doi: 10.1016/S1673-8527(09)60078-3.
8
Alcohol inhibits smooth muscle cell proliferation via regulation of the Notch signaling pathway.
Arterioscler Thromb Vasc Biol. 2010 Dec;30(12):2597-603. doi: 10.1161/ATVBAHA.110.215681. Epub 2010 Oct 7.
9
Patient-specific biomechanical profiling in abdominal aortic aneurysm development and rupture.
J Vasc Surg. 2010 Aug;52(2):480-8. doi: 10.1016/j.jvs.2010.01.029. Epub 2010 Apr 14.
10
Smooth muscle phenotypic modulation is an early event in aortic aneurysms.
J Thorac Cardiovasc Surg. 2009 Dec;138(6):1392-9. doi: 10.1016/j.jtcvs.2009.07.075.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验