Wang Cong-Zhi, Lan Jian-Hui, Wu Qun-Yan, Zhao Yu-Liang, Wang Xiang-Ke, Chai Zhi-Fang, Shi Wei-Qun
Group of Nuclear Energy Chemistry, Key Laboratory of Nuclear Radiation and Nuclear Energy Technology and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
Dalton Trans. 2014 Jun 21;43(23):8713-20. doi: 10.1039/c4dt00032c.
At present, designing novel ligands for efficient actinide extraction in spent nuclear fuel reprocessing is extremely challenging due to the complicated chemical behaviors of actinides, the similar chemical properties of minor actinides (MA) and lanthanides, and the vulnerability of organic ligands in acidic radioactive solutions. In this work, a quantum chemical study on Am(III), Cm(III) and Eu(III) complexes with N,N,N',N'-tetraoctyl diglycolamide (TODGA) and N,N'-dimethyl-N,N'-diheptyl-3-oxapentanediamide (DMDHOPDA) has been carried out to explore the extraction behaviors of trivalent actinides (An) and lanthanides (Ln) with diglycolamides from acidic media. It has been found that in the 1 : 1 (ligand : metal) and 2 : 1 stoichiometric complexes, the carbonyl oxygen atoms have stronger coordination ability than the ether oxygen atoms, and the interactions between metal cations and organic ligands are substantially ionic. The neutral ML(NO3)3 (M = Am, Cm, Eu) complexes seem to be the most favorable species in the extraction process, and the predicted relative selectivities are in agreement with experimental results, i.e., the diglycolamide ligands have slightly higher selectivity for Am(III) over Eu(III). Such a thermodynamical priority is probably caused by the higher stabilities of Eu(III) hydration species and Eu(III)-L complexes in aqueous solution compared to their analogues. In addition, our thermodynamic analysis from water to organic medium confirms that DMDHOPDA has higher extraction ability for the trivalent actinides and lanthanides than TODGA, which may be due to the steric hindrance of the bulky alkyl groups of TODGA ligands. This work might provide an insight into understanding the origin of the actinide selectivity and a theoretical basis for designing highly efficient extractants for actinide separation.
目前,由于锕系元素复杂的化学行为、次锕系元素(MA)与镧系元素相似的化学性质以及有机配体在酸性放射性溶液中的易损性,设计用于乏核燃料后处理中高效锕系元素萃取的新型配体极具挑战性。在这项工作中,对Am(III)、Cm(III)和Eu(III)与N,N,N',N'-四辛基二甘醇酰胺(TODGA)和N,N'-二甲基-N,N'-二庚基-3-氧杂戊二酰胺(DMDHOPDA)形成的配合物进行了量子化学研究,以探索二甘醇酰胺从酸性介质中萃取三价锕系元素(An)和镧系元素(Ln)的行为。研究发现,在1:1(配体:金属)和2:1化学计量比的配合物中,羰基氧原子的配位能力比醚氧原子更强,金属阳离子与有机配体之间的相互作用基本上是离子性的。中性ML(NO3)3(M = Am、Cm、Eu)配合物似乎是萃取过程中最有利的物种,预测的相对选择性与实验结果一致,即二甘醇酰胺配体对Am(III)的选择性略高于Eu(III)。这种热力学优先性可能是由于Eu(III)水合物种和Eu(III)-L配合物在水溶液中的稳定性高于其类似物。此外,我们从水相到有机相的热力学分析证实,DMDHOPDA对三价锕系元素和镧系元素的萃取能力高于TODGA,这可能是由于TODGA配体庞大烷基的空间位阻。这项工作可能有助于深入理解锕系元素选择性的起源,并为设计高效的锕系元素分离萃取剂提供理论基础。