Suppr超能文献

基于静态小波变换的多尺度多谱光声断层成像解混方法

Multiscale multispectral optoacoustic tomography by a stationary wavelet transform prior to unmixing.

出版信息

IEEE Trans Med Imaging. 2014 May;33(5):1194-202. doi: 10.1109/TMI.2014.2308578.

Abstract

Multispectral optoacoustic tomography (MSOT) utilizes broadband ultrasound detection for imaging biologically-relevant optical absorption features at a range of scales. Due to the multiscale and multispectral features of the technology, MSOT comes with distinct requirements in implementation and data analysis. In this work, we investigate the interplay between scale, which depends on ultrasonic detection frequency, and optical multispectral spectral analysis, two dimensions that are unique to MSOT and represent a previously unexplored challenge. We show that ultrasound frequency-dependent artifacts suppress multispectral features and complicate spectral analysis. In response, we employ a wavelet decomposition to perform spectral unmixing on a per-scale basis (or per ultrasound frequency band) and showcase imaging of fine-scale features otherwise hidden by low frequency components. We explain the proposed algorithm by means of simple simulations and demonstrate improved performance in imaging data of blood vessels in human subjects.

摘要

多光谱光声断层扫描(MSOT)利用宽带超声检测来成像具有生物学相关性的光吸收特征,其应用范围广泛。由于该技术具有多尺度和多光谱的特点,因此在实现和数据分析方面具有独特的要求。在这项工作中,我们研究了尺度(取决于超声检测频率)与光学多光谱光谱分析之间的相互作用,这两个维度是 MSOT 所特有的,代表了一个以前未被探索的挑战。我们表明,超声频率相关的伪影会抑制多光谱特征并使光谱分析复杂化。作为回应,我们采用小波分解来在每个尺度(或每个超声频带)上进行光谱解混,并展示了否则被低频成分隐藏的精细尺度特征的成像。我们通过简单的模拟来说明所提出的算法,并在人体血管成像数据中展示了更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验