Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, USA.
Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
Philos Trans A Math Phys Eng Sci. 2017 Nov 28;375(2107). doi: 10.1098/rsta.2017.0262.
A key feature of optoacoustic imaging is the ability to illuminate tissue at multiple wavelengths and therefore record images with a spectral dimension. While optoacoustic images at single wavelengths reveal morphological features, in analogy to ultrasound imaging or X-ray imaging, spectral imaging concedes sensing of intrinsic chromophores and externally administered agents that can reveal physiological, cellular and subcellular functions. Nevertheless, identification of spectral moieties within images obtained at multiple wavelengths requires spectral unmixing techniques, which present a unique mathematical problem given the three-dimensional nature of the optoacoustic images. Herein we discuss progress with spectral unmixing techniques developed for multispectral optoacoustic tomography. We explain how different techniques are required for accurate sensing of intrinsic tissue chromophores such as oxygenated and deoxygenated haemoglobin versus extrinsically administered photo-absorbing agents and nanoparticles. Finally, we review recent developments that allow accurate quantification of blood oxygen saturation (sO) by transforming and solving the sO estimation problem from the spatial to the spectral domain.This article is part of the themed issue 'Challenges for chemistry in molecular imaging'.
光声成像是一种能够在多个波长下对组织进行照明,并记录具有光谱维度图像的技术。虽然单波长的光声图像可以揭示形态特征,类似于超声成像或 X 射线成像,但光谱成像可以感知内源性发色团和外源性给药剂,从而揭示生理、细胞和亚细胞功能。然而,要识别在多个波长下获得的图像中的光谱成分,需要使用光谱解混技术,由于光声图像的三维性质,这提出了一个独特的数学问题。本文讨论了为多光谱光声断层扫描开发的光谱解混技术的进展。我们解释了不同的技术是如何用于准确感知内源性组织发色团(如氧合和去氧血红蛋白)与外源性给药的光吸收剂和纳米颗粒的。最后,我们综述了通过将 sO 估计问题从空间域转换到光谱域并解决该问题,从而实现血液氧饱和度(sO)的准确量化的最新进展。本文是主题为“分子成像中的化学挑战”的特刊的一部分。