Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224.
J Gen Physiol. 2014 May;143(5):577-604. doi: 10.1085/jgp.201311123.
The sinoatrial node, whose cells (sinoatrial node cells [SANCs]) generate rhythmic action potentials, is the primary pacemaker of the heart. During diastole, calcium released from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) interacts with membrane currents to control the rate of the heartbeat. This "calcium clock" takes the form of stochastic, partially periodic, localized calcium release (LCR) events that propagate, wave-like, for limited distances. The detailed mechanisms controlling the calcium clock are not understood. We constructed a computational model of SANCs, including three-dimensional diffusion and buffering of calcium in the cytosol and SR; explicit, stochastic gating of individual RyRs and L-type calcium channels; and a full complement of voltage- and calcium-dependent membrane currents. We did not include an anatomical submembrane space or inactivation of RyRs, the two heuristic components that have been used in prior models but are not observed experimentally. When RyRs were distributed in discrete clusters separated by >1 µm, only isolated sparks were produced in this model and LCR events did not form. However, immunofluorescent staining of SANCs for RyR revealed the presence of bridging RyR groups between large clusters, forming an irregular network. Incorporation of this architecture into the model led to the generation of propagating LCR events. Partial periodicity emerged from the interaction of LCR events, as observed experimentally. This calcium clock becomes entrained with membrane currents to accelerate the beating rate, which therefore was controlled by the activity of the SERCA pump, RyR sensitivity, and L-type current amplitude, all of which are targets of β-adrenergic-mediated phosphorylation. Unexpectedly, simulations revealed the existence of a pathological mode at high RyR sensitivity to calcium, in which the calcium clock loses synchronization with the membrane, resulting in a paradoxical decrease in beating rate in response to β-adrenergic stimulation. The model indicates that the hierarchical clustering of surface RyRs in SANCs may be a crucial adaptive mechanism. Pathological desynchronization of the clocks may explain sinus node dysfunction in heart failure and RyR mutations.
窦房结(sinoatrial node,SAN)的细胞(窦房结细胞[SANCs])产生节律性动作电位,是心脏的主要起搏点。在舒张期,通过兰尼碱受体(RyRs)从肌浆网(SR)释放的钙与膜电流相互作用,控制心跳的速率。这个“钙钟”以随机的、部分周期性的、局部钙释放(LCR)事件的形式存在,这些事件呈波状传播,传播距离有限。控制钙钟的详细机制尚不清楚。我们构建了一个窦房结细胞的计算模型,包括细胞质和 SR 中钙的三维扩散和缓冲;个体 RyRs 和 L 型钙通道的显式、随机门控;以及完整的电压和钙依赖性膜电流。我们没有包括一个解剖学的亚膜空间或 RyRs 的失活,这两个启发式成分在以前的模型中使用过,但在实验中没有观察到。当 RyRs 分布在离散的簇中,簇之间的距离大于 1 µm 时,只有孤立的火花在这个模型中产生,而 LCR 事件不会形成。然而,对窦房结细胞进行 RyR 的免疫荧光染色显示,在大簇之间存在桥接 RyR 群体,形成一个不规则的网络。将这种结构纳入模型导致了传播 LCR 事件的产生。如实验观察到的那样,部分周期性是由 LCR 事件的相互作用产生的。这个钙钟与膜电流同步加速心跳速率,因此受 SERCA 泵、RyR 敏感性和 L 型电流幅度的活性的控制,所有这些都是β-肾上腺素能介导的磷酸化的靶点。出乎意料的是,模拟显示在 RyR 对钙的敏感性增加时存在一种病理模式,在这种模式下,钙钟与膜失去同步,导致对β-肾上腺素刺激的心跳速率出现反常性下降。该模型表明,SANCs 表面 RyRs 的层次聚类可能是一种关键的适应机制。时钟的病理性失步可能解释心力衰竭和 RyR 突变时窦房结功能障碍的原因。