Suppr超能文献

钙离子通道纳米区会增强局部钙离子的振幅。

Ca2+ channel nanodomains boost local Ca2+ amplitude.

机构信息

Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147.

出版信息

Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15794-9. doi: 10.1073/pnas.1313898110. Epub 2013 Sep 9.

Abstract

Local Ca(2+) signals through voltage-gated Ca(2+) channels (CaVs) drive synaptic transmission, neural plasticity, and cardiac contraction. Despite the importance of these events, the fundamental relationship between flux through a single CaV channel and the Ca(2+) signaling concentration within nanometers of its pore has resisted empirical determination, owing to limitations in the spatial resolution and specificity of fluorescence-based Ca(2+) measurements. Here, we exploited Ca(2+)-dependent inactivation of CaV channels as a nanometer-range Ca(2+) indicator specific to active channels. We observed an unexpected and dramatic boost in nanodomain Ca(2+) amplitude, ten-fold higher than predicted on theoretical grounds. Our results uncover a striking feature of CaV nanodomains, as diffusion-restricted environments that amplify small Ca(2+) fluxes into enormous local Ca(2+) concentrations. This Ca(2+) tuning by the physical composition of the nanodomain may represent an energy-efficient means of local amplification that maximizes information signaling capacity, while minimizing global Ca(2+) load.

摘要

局部钙离子信号通过电压门控钙离子通道(CaVs)驱动突触传递、神经可塑性和心脏收缩。尽管这些事件非常重要,但由于荧光钙离子测量的空间分辨率和特异性的限制,单个 CaV 通道的通量与其孔内钙离子信号浓度之间的基本关系仍然难以确定。在这里,我们利用 CaV 通道的钙离子依赖性失活作为一种纳米级钙离子指示剂,专门针对活性通道。我们观察到纳米域钙离子幅度的意外和显著增强,比理论预测高出十倍。我们的结果揭示了 CaV 纳米域的一个显著特征,即扩散受限的环境将小的钙离子通量放大为巨大的局部钙离子浓度。这种由纳米域的物理组成引起的钙离子调谐可能代表了一种能量有效的局部放大方式,最大限度地提高了信息信号传递能力,同时最小化了全局钙离子负荷。

相似文献

1
Ca2+ channel nanodomains boost local Ca2+ amplitude.钙离子通道纳米区会增强局部钙离子的振幅。
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15794-9. doi: 10.1073/pnas.1313898110. Epub 2013 Sep 9.
8
Bilobal architecture is a requirement for calmodulin signaling to Ca1.3 channels.双叶结构是钙调蛋白信号传递到 Ca1.3 通道的必要条件。
Proc Natl Acad Sci U S A. 2018 Mar 27;115(13):E3026-E3035. doi: 10.1073/pnas.1716381115. Epub 2018 Mar 12.

引用本文的文献

5
Calcium- and calmodulin-dependent inhibition of NMDA receptor currents.钙和钙调蛋白依赖性 NMDA 受体电流的抑制。
Biophys J. 2024 Feb 6;123(3):277-293. doi: 10.1016/j.bpj.2023.12.018. Epub 2023 Dec 22.
6
Clustering of Ca 1.3 L-type calcium channels by Shank3.Shank3 介导的 Ca 1.3 型 L 型钙通道聚集。
J Neurochem. 2023 Oct;167(1):16-37. doi: 10.1111/jnc.15880. Epub 2023 Jun 30.
10
A spatially resolved elemental nanodomain organization within acidocalcisomes in .在. 中,酸钙颗粒内存在元素纳米域的空间分辨组织。
Proc Natl Acad Sci U S A. 2023 Apr 18;120(16):e2300942120. doi: 10.1073/pnas.2300942120. Epub 2023 Apr 10.

本文引用的文献

2
Ca2+ signaling amplification by oligomerization of L-type Cav1.2 channels.L 型 Cav1.2 通道寡聚化增强 Ca2+信号转导。
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1749-54. doi: 10.1073/pnas.1116731109. Epub 2012 Jan 17.
6
Calmodulin as a direct detector of Ca2+ signals.钙调蛋白作为 Ca2+信号的直接探测器。
Nat Neurosci. 2011 Mar;14(3):301-4. doi: 10.1038/nn.2746. Epub 2011 Jan 23.
8

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验