Suppr超能文献

隧道纳米管:形态与结构的多样性

Tunneling nanotubes: Diversity in morphology and structure.

作者信息

Austefjord Magnus Wiger, Gerdes Hans-Hermann, Wang Xiang

机构信息

Department of Biomedicine, University of Bergen, Bergen, Norway.

出版信息

Commun Integr Biol. 2014 Jan 1;7(1):e27934. doi: 10.4161/cib.27934. Epub 2014 Feb 6.

Abstract

Tunneling nanotubes (TNTs) are recently discovered thin membranous tubes that interconnect cells. During the last decade, research has shown TNTs to be diverse in morphology and composition, varying between and within cell systems. In addition, the discovery of TNT-like extracellular protrusions, as well as observations of TNTs in vivo, has further enriched our knowledge on the diversity of TNT-like structures. Considering the complex molecular mechanisms underlying the formation of TNTs, as well as their different functions in intercellular communication, it is important to decipher how heterogeneity of TNTs is established, and to address what roles the compositional elements have in the execution of various functions. Here, we review the current knowledge on the morphological and structural diversity of TNTs, and address the relation between the formation, the structure, and the function of TNTs.

摘要

隧道纳米管(TNTs)是最近发现的连接细胞的薄膜管。在过去十年中,研究表明TNTs在形态和组成上多种多样,在不同细胞系统之间以及同一细胞系统内均有所不同。此外,类TNT细胞外突起的发现以及TNTs在体内的观察结果,进一步丰富了我们对类TNT结构多样性的认识。考虑到TNTs形成背后复杂的分子机制,以及它们在细胞间通讯中的不同功能,解读TNTs的异质性如何建立以及其组成成分在各种功能的执行中发挥何种作用非常重要。在此,我们综述了目前关于TNTs形态和结构多样性的知识,并探讨了TNTs的形成、结构和功能之间的关系。

相似文献

1
Tunneling nanotubes: Diversity in morphology and structure.
Commun Integr Biol. 2014 Jan 1;7(1):e27934. doi: 10.4161/cib.27934. Epub 2014 Feb 6.
3
Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking.
Curr Protoc Cell Biol. 2015 Jun 1;67:12.10.1-12.10.21. doi: 10.1002/0471143030.cb1210s67.
5
The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes.
Cell Mol Life Sci. 2016 Dec;73(23):4531-4545. doi: 10.1007/s00018-016-2233-y. Epub 2016 Apr 28.
6
Tunneling nanotubes: emerging view of their molecular components and formation mechanisms.
Exp Cell Res. 2012 Aug 15;318(14):1699-706. doi: 10.1016/j.yexcr.2012.05.013. Epub 2012 May 28.
7
Peering into tunneling nanotubes-The path forward.
EMBO J. 2021 Apr 15;40(8):e105789. doi: 10.15252/embj.2020105789. Epub 2021 Mar 1.
8
Mechanical properties of intercellular tunneling nanotubes formed by different mechanisms.
Heliyon. 2024 Aug 15;10(17):e36265. doi: 10.1016/j.heliyon.2024.e36265. eCollection 2024 Sep 15.
9
Tunneling Nanotube-Mediated Communication: A Mechanism of Intercellular Nucleic Acid Transfer.
Int J Mol Sci. 2022 May 14;23(10):5487. doi: 10.3390/ijms23105487.
10
Macrophages enhance 3D invasion in a breast cancer cell line by induction of tumor cell tunneling nanotubes.
Cancer Rep (Hoboken). 2019 Dec;2(6):e1213. doi: 10.1002/cnr2.1213. Epub 2019 Aug 28.

引用本文的文献

3
Beyond synapses: cytoplasmic connections in brain function and evolution.
Biol Rev Camb Philos Soc. 2025 Oct;100(5):2055-2070. doi: 10.1111/brv.70034. Epub 2025 Jun 14.
5
Induction of tunnelling nanotube-like structures by influenza A viruses requires the onset of apoptosis.
PLoS Pathog. 2025 Jun 5;21(6):e1013191. doi: 10.1371/journal.ppat.1013191. eCollection 2025 Jun.
6
Therapeutic implications of mitochondrial transfer on stem cell fate in regenerative medicine.
J Transl Med. 2025 May 21;23(1):568. doi: 10.1186/s12967-025-06472-9.
7
Mitochondrial transplantation for cardioprotection and induction of angiogenesis in ischemic heart disease.
Stem Cell Res Ther. 2025 Feb 7;16(1):54. doi: 10.1186/s13287-025-04193-w.
9
Hijacking intercellular trafficking for the spread of protein aggregates in neurodegenerative diseases: a focus on tunneling nanotubes (TNTs).
Extracell Vesicles Circ Nucl Acids. 2023 Mar 9;4(1):27-43. doi: 10.20517/evcna.2023.05. eCollection 2023.
10
Unveiling the power of mitochondrial transfer in cancer progression: a perspective in ovarian cancer.
J Ovarian Res. 2024 Nov 23;17(1):233. doi: 10.1186/s13048-024-01560-8.

本文引用的文献

1
Myo10 is a key regulator of TNT formation in neuronal cells.
J Cell Sci. 2013 Oct 1;126(Pt 19):4424-35. doi: 10.1242/jcs.129239. Epub 2013 Jul 25.
2
Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes.
J Cell Sci. 2013 Aug 15;126(Pt 16):3678-85. doi: 10.1242/jcs.126086. Epub 2013 Jun 18.
3
Tunneling nanotube (TNT) formation is independent of p53 expression.
Cell Death Differ. 2013 Aug;20(8):1124. doi: 10.1038/cdd.2013.61. Epub 2013 Jun 14.
4
Tunneling nanotubes, an emerging intercellular communication route in development.
Mech Dev. 2013 Jun-Aug;130(6-8):381-7. doi: 10.1016/j.mod.2012.11.006. Epub 2012 Dec 14.
5
LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation.
J Cell Sci. 2013 Feb 1;126(Pt 3):767-77. doi: 10.1242/jcs.114033. Epub 2012 Dec 13.
6
Membrane nanotubes in myeloid cells in the adult mouse cornea represent a novel mode of immune cell interaction.
Immunol Cell Biol. 2013 Jan;91(1):89-95. doi: 10.1038/icb.2012.52. Epub 2012 Nov 13.
8
9
Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes.
PLoS One. 2012;7(3):e33195. doi: 10.1371/journal.pone.0033195. Epub 2012 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验