Shang Jing, Zhu Fei, Vongsangnak Wanwipa, Tang Yifei, Zhang Wenyu, Shen Bairong
Center for Systems Biology, Soochow University, 1st Shizi Street, Suzhou, Jiangsu 215006, China ; Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
Center for Systems Biology, Soochow University, 1st Shizi Street, Suzhou, Jiangsu 215006, China ; School of Computer Science and Technology, Soochow University, Suzhou 215006, China.
Biomed Res Int. 2014;2014:309650. doi: 10.1155/2014/309650. Epub 2014 Mar 23.
Next-generation sequencing (NGS) technology has rapidly advanced and generated the massive data volumes. To align and map the NGS data, biologists often randomly select a number of aligners without concerning their suitable feature, high performance, and high accuracy as well as sequence variations and polymorphisms existing on reference genome. This study aims to systematically evaluate and compare the capability of multiple aligners for NGS data analysis. To explore this capability, we firstly performed alignment algorithms comparison and classification. We further used long-read and short-read datasets from both real-life and in silico NGS data for comparative analysis and evaluation of these aligners focusing on three criteria, namely, application-specific alignment feature, computational performance, and alignment accuracy. Our study demonstrated the overall evaluation and comparison of multiple aligners for NGS data analysis. This serves as an important guiding resource for biologists to gain further insight into suitable selection of aligners for specific and broad applications.
下一代测序(NGS)技术发展迅速,产生了海量数据。为了对NGS数据进行比对和映射,生物学家常常随机选择一些比对器,而不考虑它们的适用特征、高性能、高精度以及参考基因组上存在的序列变异和多态性。本研究旨在系统评估和比较多种比对器在NGS数据分析方面的能力。为探究这种能力,我们首先进行了比对算法的比较和分类。我们进一步使用来自实际和虚拟NGS数据的长读长和短读长数据集,针对三个标准,即特定应用的比对特征、计算性能和比对准确性,对这些比对器进行比较分析和评估。我们的研究展示了对多种用于NGS数据分析的比对器的全面评估和比较。这为生物学家深入了解为特定和广泛应用选择合适的比对器提供了重要的指导资源。