Division of Nephrology and Rheumatology, Department of Internal Medicine, Fukuoka University School of Medicine, Fukuoka, Japan.
Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
Biochem Biophys Res Commun. 2014 May 30;448(2):175-81. doi: 10.1016/j.bbrc.2014.04.084. Epub 2014 Apr 26.
Carnitine palmitoyltransferase II (CPT II) deficiency is an inherited disorder involving β-oxidation of long-chain fatty acids (FAO), which leads to rhabdomyolysis and subsequent acute renal failure. The detailed mechanisms of disease pathogenesis remain unknown; however, the availability of relevant human cell types for investigation, such as skeletal muscle cells, is limited, and the development of novel disease models is required.
We generated human induced pluripotent stem cells (hiPSCs) from skin fibroblasts of a Japanese patient with CPT II deficiency. Mature myocytes were differentiated from the patient-derived hiPSCs by introducing myogenic differentiation 1 (MYOD1), the master transcriptional regulator of myocyte differentiation. Using an in vitro acylcarnitine profiling assay, we investigated the effects of a hypolipidemic drug, bezafibrate, and heat stress on mitochondrial FAO in CPT II-deficient myocytes and controls.
CPT II-deficient myocytes accumulated more palmitoylcarnitine (C16) than did control myocytes. Heat stress, induced by incubation at 38°C, leads to a robust increase of C16 in CPT II-deficient myocytes, but not in controls. Bezafibrate reduced the amount of C16 in control and CPT II-deficient myocytes.
In this study, we induced differentiation of CPT II-deficient hiPSCs into mature myocytes in a highly efficient and reproducible manner and recapitulated some aspects of the disease phenotypes of CPT II deficiency in the myocyte disease models. This approach addresses the challenges of modeling the abnormality of FAO in CPT II deficiency using iPSC technology and has the potential to revolutionize translational research in this field.
肉毒碱棕榈酰基转移酶 II(CPT II)缺乏症是一种涉及长链脂肪酸(FAO)β氧化的遗传性疾病,可导致横纹肌溶解和随后的急性肾衰竭。疾病发病机制的详细机制尚不清楚;然而,可用于研究的相关人类细胞类型(如骨骼肌细胞)有限,需要开发新型疾病模型。
我们从一名日本 CPT II 缺乏症患者的皮肤成纤维细胞中生成了人诱导多能干细胞(hiPSC)。通过引入肌生成分化 1(MYOD1),即肌细胞分化的主转录调节因子,将患者来源的 hiPSC 分化为成熟的肌细胞。使用体外酰基肉碱谱分析测定法,我们研究了降脂药贝特司汀和热应激对 CPT II 缺乏的肌细胞和对照中的线粒体 FAO 的影响。
CPT II 缺乏的肌细胞比对照肌细胞积累了更多的棕榈酰肉碱(C16)。在 38°C 孵育诱导的热应激导致 CPT II 缺乏的肌细胞中 C16 的大量增加,但在对照中没有增加。贝特司汀降低了对照和 CPT II 缺乏的肌细胞中 C16 的含量。
在这项研究中,我们以高效且可重复的方式将 CPT II 缺乏的 hiPSC 诱导分化为成熟的肌细胞,并在肌细胞疾病模型中再现了 CPT II 缺乏症的一些疾病表型。这种方法解决了使用 iPSC 技术模拟 CPT II 缺乏症中 FAO 异常的挑战,并且有可能彻底改变该领域的转化研究。