Suppr超能文献

用于疾病建模和药物发现的工程化骨骼肌。

Engineered skeletal muscles for disease modeling and drug discovery.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

出版信息

Biomaterials. 2019 Nov;221:119416. doi: 10.1016/j.biomaterials.2019.119416. Epub 2019 Aug 8.

Abstract

Skeletal muscle is the largest organ of human body with several important roles in everyday movement and metabolic homeostasis. The limited ability of small animal models of muscle disease to accurately predict drug efficacy and toxicity in humans has prompted the development in vitro models of human skeletal muscle that fatefully recapitulate cell and tissue level functions and drug responses. We first review methods for development of three-dimensional engineered muscle tissues and organ-on-a-chip microphysiological systems and discuss their potential utility in drug discovery research and development of new regenerative therapies. Furthermore, we describe strategies to increase the functional maturation of engineered muscle, and motivate the importance of incorporating multiple tissue types on the same chip to model organ cross-talk and generate more predictive drug development platforms. Finally, we review the ability of available in vitro systems to model diseases such as type II diabetes, Duchenne muscular dystrophy, Pompe disease, and dysferlinopathy.

摘要

骨骼肌是人体最大的器官,在日常运动和代谢稳态中具有重要作用。肌肉疾病小动物模型在准确预测药物疗效和毒性方面的能力有限,促使人们开发了能够在细胞和组织水平上重现功能和药物反应的人类骨骼肌体外模型。我们首先回顾了三维工程肌肉组织和器官芯片微生理系统的开发方法,并讨论了它们在药物发现研究和新型再生治疗方法开发中的潜在应用。此外,我们还描述了增加工程肌肉功能成熟度的策略,并强调了在同一芯片上整合多种组织类型以模拟器官串扰和生成更具预测性的药物开发平台的重要性。最后,我们回顾了现有的体外系统在模拟 II 型糖尿病、杜氏肌营养不良症、庞贝病和 dysferlinopathy 等疾病方面的能力。

相似文献

1
Engineered skeletal muscles for disease modeling and drug discovery.
Biomaterials. 2019 Nov;221:119416. doi: 10.1016/j.biomaterials.2019.119416. Epub 2019 Aug 8.
3
In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.
Adv Healthc Mater. 2018 Aug;7(15):e1701498. doi: 10.1002/adhm.201701498. Epub 2018 Apr 25.
4
Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery.
Drug Discov Today. 2016 Sep;21(9):1387-1398. doi: 10.1016/j.drudis.2016.04.013. Epub 2016 Apr 22.
5
Next generation human skin constructs as advanced tools for drug development.
Exp Biol Med (Maywood). 2017 Nov;242(17):1657-1668. doi: 10.1177/1535370217712690. Epub 2017 Jun 7.
6
Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies.
Int J Mol Sci. 2021 Sep 6;22(17):9630. doi: 10.3390/ijms22179630.
7
Stem cell therapies to treat muscular dystrophy: progress to date.
BioDrugs. 2010 Aug 1;24(4):237-47. doi: 10.2165/11534300-000000000-00000.
8
Development and application of human skeletal muscle microphysiological systems.
Lab Chip. 2018 Oct 9;18(20):3061-3073. doi: 10.1039/c8lc00553b.
9
Induced Pluripotent Stem Cells for Tissue-Engineered Skeletal Muscles.
Int J Mol Sci. 2023 Jul 15;24(14):11520. doi: 10.3390/ijms241411520.
10
The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle.
Neuromuscul Disord. 2005 Feb;15(2):117-26. doi: 10.1016/j.nmd.2004.10.018. Epub 2005 Jan 11.

引用本文的文献

2
A Self-Renewing Biomimetic Skeletal Muscle Construct Engineered using Induced Myogenic Progenitor Cells.
Adv Funct Mater. 2023 Sep 27;34(1). doi: 10.1002/adfm.202300571. eCollection 2024 Jan.
3
Skeletal muscle, neuromuscular organoids and assembloids: a scoping review.
EBioMedicine. 2025 Jun 26;118:105825. doi: 10.1016/j.ebiom.2025.105825.
4
Insights into human muscle biology from human primary skeletal muscle cell culture.
J Muscle Res Cell Motil. 2025 May 10. doi: 10.1007/s10974-025-09696-w.
5
The unique biology of catch muscles: insights into structure, function, and robotics innovations.
Front Bioeng Biotechnol. 2025 Apr 16;13:1478626. doi: 10.3389/fbioe.2025.1478626. eCollection 2025.
7
Advancing biohybrid robotics: Innovations in contraction models, control techniques, and applications.
Biophys Rev (Melville). 2025 Feb 12;6(1):011304. doi: 10.1063/5.0246194. eCollection 2025 Mar.
8
One-step fabrication of 3D-aligned human skeletal muscle tissue and measurement of contractile force for preclinical drug testing.
Mater Today Bio. 2025 Jan 11;31:101456. doi: 10.1016/j.mtbio.2025.101456. eCollection 2025 Apr.
9
Proteomics and machine learning: Leveraging domain knowledge for feature selection in a skeletal muscle tissue meta-analysis.
Heliyon. 2024 Nov 29;10(24):e40772. doi: 10.1016/j.heliyon.2024.e40772. eCollection 2024 Dec 30.
10
Engineered myovascular tissues for studies of endothelial/satellite cell interactions.
Acta Biomater. 2024 Oct 15;188:65-78. doi: 10.1016/j.actbio.2024.09.020. Epub 2024 Sep 19.

本文引用的文献

2
Quantification of human neuromuscular function through optogenetics.
Theranostics. 2019 Jan 31;9(5):1232-1246. doi: 10.7150/thno.25735. eCollection 2019.
3
Incorporation of macrophages into engineered skeletal muscle enables enhanced muscle regeneration.
Nat Biomed Eng. 2018 Dec;2(12):942-954. doi: 10.1038/s41551-018-0290-2. Epub 2018 Oct 1.
4
Development of a human skeletal micro muscle platform with pacing capabilities.
Biomaterials. 2019 Apr;198:217-227. doi: 10.1016/j.biomaterials.2018.11.030. Epub 2018 Nov 28.
5
Identification of Novel Antisense-Mediated Exon Skipping Targets in DYSF for Therapeutic Treatment of Dysferlinopathy.
Mol Ther Nucleic Acids. 2018 Dec 7;13:596-604. doi: 10.1016/j.omtn.2018.10.004. Epub 2018 Oct 11.
7
Engineered DNA plasmid reduces immunity to dystrophin while improving muscle force in a model of gene therapy of Duchenne dystrophy.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9182-E9191. doi: 10.1073/pnas.1808648115. Epub 2018 Sep 4.
8
Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle.
Biomaterials. 2019 Apr;198:259-269. doi: 10.1016/j.biomaterials.2018.08.058. Epub 2018 Aug 31.
9
Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy.
Science. 2018 Oct 5;362(6410):86-91. doi: 10.1126/science.aau1549. Epub 2018 Aug 30.
10
Membrane Stabilization by Modified Steroid Offers a Potential Therapy for Muscular Dystrophy Due to Dysferlin Deficit.
Mol Ther. 2018 Sep 5;26(9):2231-2242. doi: 10.1016/j.ymthe.2018.07.021. Epub 2018 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验