1] Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany [2].
1] Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany [2] Institut für Physik, Martin-Luther-Universität Halle, von-Danckelmann-Platz 3, 06120 Halle, Germany.
Nat Commun. 2014 Apr 30;5:3768. doi: 10.1038/ncomms4768.
In spin electronics, the spin degree of freedom is used to transmit and store information. To this end the ability to create pure spin currents--that is, without net charge transfer--is essential. When the magnetization vector in a ferromagnet-normal metal junction is excited, the spin pumping effect leads to the injection of pure spin currents into the normal metal. The polarization of this spin current is time-dependent and contains a very small d.c. component. Here we show that the large a.c. component of the spin currents can be detected efficiently using the inverse spin Hall effect. The observed a.c.-inverse spin Hall voltages are one order of magnitude larger than the conventional d.c.-inverse spin Hall voltages measured on the same device. Our results demonstrate that ferromagnet-normal metal junctions are efficient sources of pure spin currents in the gigahertz frequency range.
在自旋电子学中,自旋自由度被用来传输和存储信息。为此,能够产生纯自旋电流(即没有净电荷转移)是至关重要的。当铁磁体-正常金属结中的磁化矢量被激发时,自旋泵浦效应导致纯自旋电流注入到正常金属中。这个自旋电流的极化是时变的,并且包含一个非常小的直流分量。在这里,我们表明可以通过逆自旋霍尔效应有效地检测到自旋电流的大交流分量。观察到的交流-逆自旋霍尔电压比在同一器件上测量的传统直流-逆自旋霍尔电压大一个数量级。我们的结果表明,铁磁体-正常金属结在千兆赫频率范围内是纯自旋电流的有效源。