Barbieri Robert L
Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA,
Methods Mol Biol. 2014;1154:145-69. doi: 10.1007/978-1-4939-0659-8_7.
The ovulatory menstrual cycle is the result of the integrated action of the hypothalamus, pituitary, ovary, and endometrium. Like a metronome, the hypothalamus sets the beat for the menstrual cycle by the pulsatile release of gonadotropin-releasing hormone (GnRH). GnRH pulses occur every 1-1.5 h in the follicular phase of the cycle and every 2-4 h in the luteal phase of the cycle. Pulsatile GnRH secretion stimulates the pituitary gland to secrete luteinizing hormone (LH) and follicle stimulating hormone (FSH). The pituitary gland translates the tempo set by the hypothalamus into a signal, LH and FSH secretion, that can be understood by the ovarian follicle. The ovarian follicle is composed of three key cells: theca cells, granulosa cells, and the oocyte. In the ovarian follicle, LH stimulates theca cells to produce androstenedione. In granulosa cells from small antral follicles, FSH stimulates the synthesis of aromatase (Cyp19) which catalyzes the conversion of theca-derived androstenedione to estradiol. A critical concentration of estradiol, produced from a large dominant antral follicle, causes positive feedback in the hypothalamus, likely through the kisspeptin system, resulting in an increase in GnRH secretion and an LH surge. The LH surge causes the initiation of the process of ovulation. After ovulation, the follicle is transformed into the corpus luteum, which is stimulated by LH or chorionic gonadotropin (hCG) should pregnancy occur to secrete progesterone. Progesterone prepares the endometrium for implantation of the conceptus. Estradiol stimulates the endometrium to proliferate. Estradiol and progesterone cause the endometrium to become differentiated to a secretory epithelium. During the mid-luteal phase of the cycle, when progesterone production is at its peak, the secretory endometrium is optimally prepared for the implantation of an embryo. A diagrammatic representation of the intricate interactions involved in coordinating the menstrual cycle is provided in Fig. 1.
排卵性月经周期是下丘脑、垂体、卵巢和子宫内膜共同作用的结果。下丘脑就像一个节拍器,通过脉冲式释放促性腺激素释放激素(GnRH)来设定月经周期的节奏。GnRH脉冲在月经周期的卵泡期每1 - 1.5小时出现一次,在黄体期每2 - 4小时出现一次。脉冲式GnRH分泌刺激垂体分泌黄体生成素(LH)和卵泡刺激素(FSH)。垂体将下丘脑设定的节奏转化为卵巢卵泡能够理解的信号,即LH和FSH分泌。卵巢卵泡由三种关键细胞组成:卵泡膜细胞、颗粒细胞和卵母细胞。在卵巢卵泡中,LH刺激卵泡膜细胞产生雄烯二酮。在小窦状卵泡的颗粒细胞中,FSH刺激芳香化酶(Cyp19)的合成,该酶催化卵泡膜细胞产生的雄烯二酮转化为雌二醇。由一个大的优势窦状卵泡产生的临界浓度的雌二醇,可能通过亲吻素系统在下丘脑引起正反馈,导致GnRH分泌增加和LH峰。LH峰引发排卵过程。排卵后,卵泡转化为黄体,如果怀孕,黄体受到LH或绒毛膜促性腺激素(hCG)刺激而分泌孕酮。孕酮使子宫内膜为受精卵着床做好准备。雌二醇刺激子宫内膜增殖。雌二醇和孕酮使子宫内膜分化为分泌上皮。在月经周期的黄体中期,当孕酮分泌达到峰值时,分泌期子宫内膜为胚胎着床做好了最佳准备。图1展示了协调月经周期所涉及的复杂相互作用的示意图。