Zhou Xunfu, Liu Weijian, Yu Xiaoyuan, Liu Yingju, Fang Yueping, Klankowski Steven, Yang Yiqun, Brown James Emery, Li Jun
The Institute of Biomaterial, College of Science, South China Agricultural University , Guangzhou, Guangdong 510642, China.
ACS Appl Mater Interfaces. 2014 May 28;6(10):7434-43. doi: 10.1021/am5007194. Epub 2014 May 13.
The SnO2@C@GS composites as a new type of 3D nanoarchitecture have been successfully synthesized by a facile hydrothermal process followed by a sintering strategy. Such a 3D nanoarchitecture is made up of SnO2@C core-shell nanospheres and nanochains anchored on wrinkled graphene sheets (GSs). Transmission electron microscopy shows that these core-shell nanoparticles consist of 3-9 nm diameter secondary SnO2 nanoparticles embedded in about 50 nm diameter primary carbon nanospheres. Large quantities of core-shell nanoparticles are uniformly attached to the surface of wrinkled graphene nanosheets, with a portion of them further connected into nanochains. This new 3D nanoarchitecture consists of two different kinds of carbon-buffering matrixes, i.e., the carbon layer produced by glucose carbonization and the added GS template, leading to enhanced lithium storage properties. The lithium-cycling properties of the SnO2@C@GS composite have been evaluated by galvanostatic discharge-charge cycling and electrochemical impedance spectroscopy. Results show that the SnO2@C@GS composite has discharge capacities of 883.5, 845.7, and 830.5 mA h g(-1) in the 20th, 50th and 100th cycles, respectively, at a current density of 200 mA g(-1) and delivers a desirable discharge capacity of 645.2 mA h g(-1) at a rate of 1680 mA g(-1). This new 3D nanoarchitecture exhibits a high capability and excellent cycling and rate performance, holding great potential as a high-rate and stable anode material for lithium storage.
通过简便的水热法随后烧结策略,成功合成了作为新型三维纳米结构的SnO₂@C@GS复合材料。这种三维纳米结构由SnO₂@C核壳纳米球和锚定在褶皱石墨烯片(GS)上的纳米链组成。透射电子显微镜显示,这些核壳纳米颗粒由直径为3 - 9nm的次级SnO₂纳米颗粒嵌入直径约50nm的初级碳纳米球中组成。大量的核壳纳米颗粒均匀地附着在褶皱石墨烯纳米片的表面,其中一部分进一步连接成纳米链。这种新型三维纳米结构由两种不同的碳缓冲基质组成,即葡萄糖碳化产生的碳层和添加的GS模板,从而导致锂存储性能增强。通过恒电流充放电循环和电化学阻抗谱对SnO₂@C@GS复合材料的锂循环性能进行了评估。结果表明,在200mA g⁻¹的电流密度下,SnO₂@C@GS复合材料在第20、50和100次循环中的放电容量分别为883.5、845.7和830.5 mA h g⁻¹,在1680mA g⁻¹的倍率下具有645.2 mA h g⁻¹的理想放电容量。这种新型三维纳米结构表现出高容量、优异的循环和倍率性能,作为锂存储的高倍率和稳定负极材料具有巨大潜力。