Suppr超能文献

石墨烯的高速滑动摩擦及持久超滑的新途径。

The high-speed sliding friction of graphene and novel routes to persistent superlubricity.

机构信息

1] International Center for Applied Mechanics, SV Lab, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China [2] Centre for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.

1] Centre for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China [2] Department of Physics, Tsinghua University, Beijing 100084, China [3] London Centre for Nanotechnology, University College London, London WC1H OAH, U.K [4] Centre Universitaire d'Informatique, University of Geneva, CH-1227 Carouge, Switzerland.

出版信息

Sci Rep. 2014 May 2;4:4875. doi: 10.1038/srep04875.

Abstract

Recent experiments on microscopic graphite mesas demonstrate reproducible high-speed microscale superlubricity, even under ambient conditions. Here, we explore the same phenomenon on the nanoscale, by studying a graphene flake sliding on a graphite substrate, using molecular dynamics. We show that superlubricity is punctuated by high-friction transients as the flake rotates through successive crystallographic alignments with the substrate. Further, we introduce two novel routes to suppress frictional scattering and achieve persistent superlubricity. We use graphitic nanoribbons to eliminate frictional scattering by constraining the flake rotation, an approach we call frictional waveguides. We can also effectively suppress frictional scattering by biaxial stretching of the graphitic substrate. These new routes to persistent superlubricity at the nanoscale may guide the design of ultra-low dissipation nanomechanical devices.

摘要

最近的微观石墨台面实验证明了即使在环境条件下,也能实现可重复的高速微尺度超滑。在这里,我们通过分子动力学研究了在纳米尺度上的相同现象,研究了在石墨衬底上滑动的石墨烯薄片。我们表明,超滑被薄片通过与衬底连续的晶体取向的旋转过程中的高摩擦瞬态所打断。此外,我们引入了两种抑制摩擦散射并实现持续超滑的新方法。我们使用石墨纳米带通过约束薄片旋转来消除摩擦散射,我们称之为摩擦波导。我们还可以通过双轴拉伸石墨衬底来有效抑制摩擦散射。这些在纳米尺度上实现持续超滑的新途径可能为超低损耗纳米机械器件的设计提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c2/4007076/c7880b7e8406/srep04875-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验