Kajungu Dan K, Erhart Annette, Talisuna Ambrose Otau, Bassat Quique, Karema Corine, Nabasumba Carolyn, Nambozi Michael, Tinto Halidou, Kremsner Peter, Meremikwu Martin, D'Alessandro Umberto, Speybroeck Niko
Research Institute of Health and Society (IRSS), Université catholique de Louvain, Brussels, Belgium; Uganda Malaria Surveillance project/Infectious Disease Research Collaboration, Kampala, Uganda; Santé Stat. and Analytical Research Institute (SSARI), Kampala, Uganda.
Institute of Tropical Medicine, Antwerp, Belgium.
PLoS One. 2014 May 1;9(5):e96388. doi: 10.1371/journal.pone.0096388. eCollection 2014.
Pharmacovigilance programmes monitor and help ensuring the safe use of medicines which is critical to the success of public health programmes. The commonest method used for discovering previously unknown safety risks is spontaneous notifications. In this study we examine the use of data mining algorithms to identify signals from adverse events reported in a phase IIIb/IV clinical trial evaluating the efficacy and safety of several Artemisinin-based combination therapies (ACTs) for treatment of uncomplicated malaria in African children.
We used paediatric safety data from a multi-site, multi-country clinical study conducted in seven African countries (Burkina Faso, Gabon, Nigeria, Rwanda, Uganda, Zambia, and Mozambique). Each site compared three out of four ACTs, namely amodiaquine-artesunate (ASAQ), dihydroartemisinin-piperaquine (DHAPQ), artemether-lumefantrine (AL) or chlorproguanil/dapsone and artesunate (CD+A). We examine two pharmacovigilance signal detection methods, namely proportional reporting ratio and Bayesian Confidence Propagation Neural Network on the clinical safety dataset.
Among the 4,116 children (6-59 months old) enrolled and followed up for 28 days post treatment, a total of 6,238 adverse events were reported resulting into 346 drug-event combinations. Nine signals were generated both by proportional reporting ratio and Bayesian Confidence Propagation Neural Network. A review of the manufacturer package leaflets, an online Multi-Drug Symptom/Interaction Checker (DoubleCheckMD) and further by therapeutic area experts reduced the number of signals to five. The ranking of some drug-adverse reaction pairs on the basis of their signal index differed between the two methods.
Our two data mining methods were equally able to generate suspected signals using the pooled safety data from a phase IIIb/IV clinical trial. This analysis demonstrated the possibility of utilising clinical studies safety data for key pharmacovigilance activities like signal detection and evaluation. This approach can be applied to complement the spontaneous reporting systems which are limited by under reporting.
药物警戒计划监测并有助于确保药物的安全使用,这对公共卫生计划的成功至关重要。发现先前未知安全风险最常用的方法是自发报告。在本研究中,我们研究了使用数据挖掘算法从一项IIIb/IV期临床试验中报告的不良事件中识别信号,该试验评估了几种基于青蒿素的联合疗法(ACTs)用于治疗非洲儿童单纯性疟疾的疗效和安全性。
我们使用了在七个非洲国家(布基纳法索、加蓬、尼日利亚、卢旺达、乌干达、赞比亚和莫桑比克)进行的一项多地点、多国临床研究中的儿科安全数据。每个地点比较了四种ACTs中的三种,即阿莫地喹-青蒿琥酯(ASAQ)、双氢青蒿素-哌喹(DHAPQ)、蒿甲醚-本芴醇(AL)或氯胍/氨苯砜和青蒿琥酯(CD+A)。我们在临床安全数据集上研究了两种药物警戒信号检测方法,即比例报告比和贝叶斯置信传播神经网络。
在纳入的4116名儿童(6至59个月大)中,治疗后随访28天,共报告了6238起不良事件,产生了346种药物-事件组合。比例报告比和贝叶斯置信传播神经网络均产生了9个信号。通过查阅制造商的药品说明书、在线多药物症状/相互作用检查器(DoubleCheckMD)以及进一步咨询治疗领域专家,信号数量减少到了5个。两种方法基于信号指数对一些药物-不良反应对的排名有所不同。
我们的两种数据挖掘方法同样能够使用IIIb/IV期临床试验的汇总安全数据生成可疑信号。该分析证明了利用临床研究安全数据进行信号检测和评估等关键药物警戒活动的可能性。这种方法可用于补充因报告不足而受限的自发报告系统。