Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China;
Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China;
J Immunol. 2014 Jun 1;192(11):5179-91. doi: 10.4049/jimmunol.1400101. Epub 2014 Apr 30.
B cell activation is regulated through the interplay of the BCR with the inhibitory coreceptor FcγRIIB and the activating coreceptor CD19. Recent studies suggest that Ag-driven BCR microclusters are efficiently converted to a signaling active state on colocalization with CD19 microclusters. Using total internal reflection fluorescence microscopy-based, high-resolution, high-speed live-cell and molecule imaging approaches, we show that when co-ligated to the BCR, the FcγRIIB can inhibit B cell activation by blocking the colocalization of BCR and CD19 microclusters within the B cell immunological synapse. Remarkably, this inhibitory function of FcγRIIB is dependent not on its well-characterized ITIM-containing cytoplasmic domain, but its transmembrane domain. Indeed, human primary B cells from systemic lupus erythematosus patients homozygous for gene encoding the loss-of-function transmembrane domain mutant FcγRIIB-I232T fail to block the synaptic colocalization of the BCR with CD19, leading to dysregulated recruitment of downstream signaling molecule p-PI3K to membrane proximal signalosome. This inhibitory function of FcγRIIB in impairing the spatial-temporal colocalization of BCR and CD19 microclusters in the B cell immunological synapse may help explain the hyper-reactive features of systemic lupus erythematosus patient B cells in reported studies. These observations may also provide new targets for therapies for systemic autoimmune disease.
B 细胞的激活受 B 细胞受体(BCR)与抑制性共受体 FcγRIIB 和激活性共受体 CD19 相互作用的调节。最近的研究表明,抗原驱动的 BCR 微簇在与 CD19 微簇共定位时,可有效地转化为信号活跃状态。我们使用全内反射荧光显微镜为基础的高分辨率、高速活细胞和分子成像方法,显示当与 BCR 共交联时,FcγRIIB 可以通过阻止 B 细胞免疫突触中 BCR 和 CD19 微簇的共定位来抑制 B 细胞的激活。值得注意的是,FcγRIIB 的这种抑制功能不依赖于其特征明确的包含 ITIM 的细胞质结构域,而是依赖于其跨膜结构域。事实上,系统性红斑狼疮患者的原代 B 细胞,这些患者纯合了编码丧失功能的跨膜结构域突变体 FcγRIIB-I232T 的基因,无法阻止 BCR 与 CD19 在突触处的共定位,导致下游信号分子 p-PI3K 向膜近端信号体的失调募集。FcγRIIB 在破坏 B 细胞免疫突触中 BCR 和 CD19 微簇的时空共定位中的这种抑制功能,可能有助于解释报道的系统性红斑狼疮患者 B 细胞的高反应性特征。这些观察结果也可能为治疗系统性自身免疫疾病提供新的靶点。