Suppr超能文献

相似文献

1
Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus.
J Neurophysiol. 2014 Jul 15;112(2):430-45. doi: 10.1152/jn.00132.2014. Epub 2014 Apr 30.
2
Spike threshold adaptation diversifies neuronal operating modes in the auditory brain stem.
J Neurophysiol. 2019 Dec 1;122(6):2576-2590. doi: 10.1152/jn.00234.2019. Epub 2019 Oct 2.
3
Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus.
J Neurophysiol. 2014 Feb;111(4):817-35. doi: 10.1152/jn.00971.2011. Epub 2013 Nov 27.
4
Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus.
J Neurophysiol. 2019 Mar 1;121(3):908-927. doi: 10.1152/jn.00459.2018. Epub 2019 Jan 16.
5
Tonotopic projections of the auditory nerve to the cochlear nucleus angularis in the barn owl.
J Assoc Res Otolaryngol. 2001 Mar;2(1):41-53. doi: 10.1007/s101620010027.
6
Difference in response reliability predicted by spectrotemporal tuning in the cochlear nuclei of barn owls.
J Neurosci. 2011 Mar 2;31(9):3234-42. doi: 10.1523/JNEUROSCI.5422-10.2011.
7
Coding of sound pressure level in the barn owl's auditory nerve.
J Neurosci. 1999 Nov 1;19(21):9674-86. doi: 10.1523/JNEUROSCI.19-21-09674.1999.
8
Spike timing precision changes with spike rate adaptation in the owl's auditory space map.
J Neurophysiol. 2015 Oct;114(4):2204-19. doi: 10.1152/jn.00442.2015. Epub 2015 Aug 12.
9
Kv1 channels regulate variations in spike patterning and temporal reliability in the avian cochlear nucleus angularis.
J Neurophysiol. 2022 Jan 1;127(1):116-129. doi: 10.1152/jn.00460.2021. Epub 2021 Nov 24.
10
Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus.
J Physiol. 2013 Jul 1;591(13):3401-19. doi: 10.1113/jphysiol.2013.253062. Epub 2013 Apr 29.

引用本文的文献

1
Electrophysiological correlates of divergent projections in the avian superior olivary nucleus.
J Neurophysiol. 2024 Nov 1;132(5):1412-1425. doi: 10.1152/jn.00099.2024. Epub 2024 Sep 11.
2
Kv1 channels regulate variations in spike patterning and temporal reliability in the avian cochlear nucleus angularis.
J Neurophysiol. 2022 Jan 1;127(1):116-129. doi: 10.1152/jn.00460.2021. Epub 2021 Nov 24.
3
Effect of Stimulus-Dependent Spike Timing on Population Coding of Sound Location in the Owl's Auditory Midbrain.
eNeuro. 2020 Apr 23;7(2). doi: 10.1523/ENEURO.0244-19.2020. Print 2020 Mar/Apr.
4
Spike threshold adaptation diversifies neuronal operating modes in the auditory brain stem.
J Neurophysiol. 2019 Dec 1;122(6):2576-2590. doi: 10.1152/jn.00234.2019. Epub 2019 Oct 2.
5
Neural coding and perception of auditory motion direction based on interaural time differences.
J Neurophysiol. 2019 Oct 1;122(4):1821-1842. doi: 10.1152/jn.00081.2019. Epub 2019 Aug 28.
7
Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
J Neurosci. 2016 Aug 10;36(32):8500-15. doi: 10.1523/JNEUROSCI.4449-15.2016.
8
Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding.
PLoS Comput Biol. 2016 Jun 15;12(6):e1004984. doi: 10.1371/journal.pcbi.1004984. eCollection 2016 Jun.
9
Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons.
PLoS Comput Biol. 2016 Feb 23;12(2):e1004761. doi: 10.1371/journal.pcbi.1004761. eCollection 2016 Feb.
10
Spike timing precision changes with spike rate adaptation in the owl's auditory space map.
J Neurophysiol. 2015 Oct;114(4):2204-19. doi: 10.1152/jn.00442.2015. Epub 2015 Aug 12.

本文引用的文献

1
Spike-threshold adaptation predicted by membrane potential dynamics in vivo.
PLoS Comput Biol. 2014 Apr 10;10(4):e1003560. doi: 10.1371/journal.pcbi.1003560. eCollection 2014 Apr.
2
Predicting spike timing in highly synchronous auditory neurons at different sound levels.
J Neurophysiol. 2013 Oct;110(7):1672-88. doi: 10.1152/jn.00051.2013. Epub 2013 Jul 17.
3
Binaural gain modulation of spectrotemporal tuning in the interaural level difference-coding pathway.
J Neurosci. 2013 Jul 3;33(27):11089-99. doi: 10.1523/JNEUROSCI.4941-12.2013.
4
TYPE III EXCITABILITY, SLOPE SENSITIVITY AND COINCIDENCE DETECTION.
Discrete Contin Dyn Syst Ser A. 2012 Aug 1;32(8):2729-2757. doi: 10.3934/dcds.2012.32.2729.
6
Computing with neural synchrony.
PLoS Comput Biol. 2012;8(6):e1002561. doi: 10.1371/journal.pcbi.1002561. Epub 2012 Jun 14.
7
Parallel coding of first- and second-order stimulus attributes by midbrain electrosensory neurons.
J Neurosci. 2012 Apr 18;32(16):5510-24. doi: 10.1523/JNEUROSCI.0478-12.2012.
8
Effect of instantaneous frequency glides on interaural time difference processing by auditory coincidence detectors.
Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):18138-43. doi: 10.1073/pnas.1108921108. Epub 2011 Oct 17.
9
Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones.
J Physiol. 2011 Nov 1;589(Pt 21):5125-42. doi: 10.1113/jphysiol.2011.216721. Epub 2011 Sep 12.
10
Brian hears: online auditory processing using vectorization over channels.
Front Neuroinform. 2011 Jul 22;5:9. doi: 10.3389/fninf.2011.00009. eCollection 2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验