Department of BiologyUniversity of Maryland, College Park, Maryland, United States.
J Neurophysiol. 2024 Nov 1;132(5):1412-1425. doi: 10.1152/jn.00099.2024. Epub 2024 Sep 11.
The physiological diversity of inhibitory neurons provides ample opportunity to influence a wide range of computational roles through their varied activity patterns, especially via feedback loops. In the avian auditory brain stem, inhibition originates primarily from the superior olivary nucleus (SON), and so it is critical to understand the intrinsic physiological properties and processing capabilities of these neurons. Neurons in the SON receive ascending input via the cochlear nuclei: directly from the intensity-coding cochlear nucleus angularis (NA) and indirectly via the interaural timing nucleus laminaris (NL), which itself receives input from cochlear nucleus magnocellularis (NM). Two distinct populations of SON neurons provide inhibitory feedback either to ipsilateral NA, NL, and the timing cochlear nucleus NM or to the contralateral SON. To determine whether these populations correspond to distinct response types, we investigated their electrophysiology in brain stem slices, using patch-clamp electrophysiology. We identified three phenotypes: single-spiking, chattering tonic, and regular tonic neurons. The two tonic phenotypes displayed distinct firing patterns and different membrane properties. Fluctuating "noisy" currents used to probe the capability of SON neurons to encode temporal features showed that each phenotype differed in sensitivity to temporally modulated input. By using cell fills and anatomical reconstructions, we could correlate the firing phenotypes with their axonal projection patterns. We found that SON axons exited via three fiber tracts, with each tract composed of specific phenotypes. These results provide a basis for understanding the role of specific inhibitory cell types in auditory function and elucidate the organization of the SON outputs. Inhibitory inputs for the avian brain stem originate primarily from the superior olivary nucleus (SON). We describe three intrinsic phenotypes of SON neurons and show how they differ in their temporal processing and projection patterns. We propose that the two types of tonic firing neurons (including one novel type) and the single-spiking neurons in SON comprise separate feedback circuits that may differentially influence the auditory information flowing via the cochlear nuclei and nucleus laminaris.
抑制性神经元的生理多样性为通过其多样化的活动模式(尤其是通过反馈回路)影响广泛的计算角色提供了充足的机会。在禽类听觉脑干中,抑制主要源自上橄榄核(SON),因此了解这些神经元的固有生理特性和处理能力至关重要。SON 中的神经元通过耳蜗核接收上行输入:直接来自于强度编码耳蜗核角状(NA),间接来自于两耳定时核 laminaris(NL),后者本身接收来自耳蜗核 magnocellularis(NM)的输入。SON 中的两个不同的神经元群体提供抑制性反馈,要么反馈到同侧的 NA、NL 和定时耳蜗核 NM,要么反馈到对侧的 SON。为了确定这些群体是否对应于不同的反应类型,我们使用膜片钳电生理学在脑干切片中研究了它们的电生理学。我们鉴定了三种表型:单峰放电、喋喋不休的紧张性和规则的紧张性神经元。两种紧张性表型显示出不同的放电模式和不同的膜特性。波动的“噪声”电流用于探测 SON 神经元编码时间特征的能力,表明每种表型对时间调制输入的敏感性不同。通过使用细胞填充和解剖重建,我们可以将放电表型与它们的轴突投射模式相关联。我们发现,SON 轴突通过三个纤维束离开,每个束由特定的表型组成。这些结果为理解特定抑制性细胞类型在听觉功能中的作用提供了基础,并阐明了 SON 输出的组织。鸟类脑干的抑制性输入主要源自上橄榄核(SON)。我们描述了 SON 神经元的三种内在表型,并展示了它们在时间处理和投射模式上的差异。我们提出,SON 中的两种紧张性放电神经元(包括一种新型)和单峰放电神经元组成了单独的反馈回路,可能以不同的方式影响流经耳蜗核和核 laminaris 的听觉信息。