Program in Neuroscience, Department of Psychology, Florida State University , Tallahassee, Florida.
J Neurophysiol. 2019 Mar 1;121(3):908-927. doi: 10.1152/jn.00459.2018. Epub 2019 Jan 16.
Sensory systems exploit parallel processing of stimulus features to enable rapid, simultaneous extraction of information. Mechanisms that facilitate this differential extraction of stimulus features can be intrinsic or synaptic in origin. A subdivision of the avian cochlear nucleus, nucleus angularis (NA), extracts sound intensity information from the auditory nerve and contains neurons that exhibit diverse responses to sound and current injection. NA neurons project to multiple regions ascending the auditory brain stem including the superior olivary nucleus, lateral lemniscus, and avian inferior colliculus, with functional implications for inhibitory gain control and sound localization. Here we investigated whether the diversity of auditory response patterns in NA can be accounted for by variation in intrinsic physiological features. Modeled sound-evoked auditory nerve input was applied to NA neurons with dynamic clamp during in vitro whole cell recording at room temperature. Temporal responses to auditory nerve input depended on variation in intrinsic properties, and the low-threshold K current was implicated as a major contributor to temporal response diversity and neuronal input-output functions. An auditory nerve model of acoustic amplitude modulation produced synchrony coding of modulation frequency that depended on the intrinsic physiology of the individual neuron. In Primary-Like neurons, varying low-threshold K conductance with dynamic clamp altered temporal modulation tuning bidirectionally. Taken together, these data suggest that intrinsic physiological properties play a key role in shaping auditory response diversity to both simple and more naturalistic auditory stimuli in the avian cochlear nucleus. NEW & NOTEWORTHY This article addresses the question of how the nervous system extracts different information in sounds. Neurons in the cochlear nucleus show diverse responses to acoustic stimuli that may allow for parallel processing of acoustic features. The present studies suggest that diversity in intrinsic physiological features of individual neurons, including levels of a low voltage-activated K current, play a major role in regulating the diversity of auditory responses.
感觉系统利用刺激特征的并行处理来实现信息的快速、同时提取。促进这种刺激特征差异提取的机制可以是内在的或突触的起源。鸟类耳蜗核的一个分支,角状核(NA),从听神经中提取声音强度信息,并且包含对声音和电流注入表现出不同反应的神经元。NA 神经元投射到多个区域,包括上橄榄核、外侧丘系和鸟类下丘,对抑制性增益控制和声音定位具有功能意义。在这里,我们研究了 NA 中听觉反应模式的多样性是否可以归因于内在生理特征的变化。在体外全细胞记录中,用室温下的动态钳对 NA 神经元施加模拟的听觉神经输入。听觉神经输入的时间响应取决于内在特性的变化,而低阈值 K 电流被认为是时间响应多样性和神经元输入-输出功能的主要贡献者。听觉神经模型产生的声调制幅度调制产生调制频率的同步编码,这取决于个体神经元的内在生理学。在初级样神经元中,用动态钳改变低阈值 K 电导会双向改变时间调制调谐。总之,这些数据表明,内在生理特性在塑造鸟类耳蜗核对简单和更自然的听觉刺激的听觉反应多样性方面起着关键作用。 新的和值得注意的是 本文探讨了神经系统如何从声音中提取不同信息的问题。耳蜗核中的神经元对声刺激表现出不同的反应,这可能允许对声特征进行并行处理。本研究表明,个体神经元内在生理特征的多样性,包括低电压激活 K 电流的水平,在调节听觉反应多样性方面起着主要作用。