Arranz Amaia M, Perkins Katherine L, Irie Fumitoshi, Lewis David P, Hrabe Jan, Xiao Fanrong, Itano Naoki, Kimata Koji, Hrabetova Sabina, Yamaguchi Yu
Genetic Disease Program, Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, and Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, Center for Advanced Brain Imaging, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, Department of Molecular Biosciences, Kyoto Sangyo University, Kyoto 603-8555, Japan, and Research Complex for Medicine Frontiers, Aichi Medical University, Aichi 480-1195, Japan.
J Neurosci. 2014 Apr 30;34(18):6164-76. doi: 10.1523/JNEUROSCI.3458-13.2014.
Hyaluronan (HA), a large anionic polysaccharide (glycosaminoglycan), is a major constituent of the extracellular matrix of the adult brain. To address its function, we examined the neurophysiology of knock-out mice deficient in hyaluronan synthase (Has) genes. Here we report that these Has mutant mice are prone to epileptic seizures, and that in Has3(-/-) mice, this phenotype is likely derived from a reduction in the size of the brain extracellular space (ECS). Among the three Has knock-out models, namely Has3(-/-), Has1(-/-), and Has2(CKO), the seizures were most prevalent in Has3(-/-) mice, which also showed the greatest HA reduction in the hippocampus. Electrophysiology in Has3(-/-) brain slices demonstrated spontaneous epileptiform activity in CA1 pyramidal neurons, while histological analysis revealed an increase in cell packing in the CA1 stratum pyramidale. Imaging of the diffusion of a fluorescent marker revealed that the transit of molecules through the ECS of this layer was reduced. Quantitative analysis of ECS by the real-time iontophoretic method demonstrated that ECS volume was selectively reduced in the stratum pyramidale by ∼ 40% in Has3(-/-) mice. Finally, osmotic manipulation experiments in brain slices from Has3(-/-) and wild-type mice provided evidence for a causal link between ECS volume and epileptiform activity. Our results provide the first direct evidence for the physiological role of HA in the regulation of ECS volume, and suggest that HA-based preservation of ECS volume may offer a novel avenue for development of antiepileptogenic treatments.
透明质酸(HA)是一种大型阴离子多糖(糖胺聚糖),是成年大脑细胞外基质的主要成分。为了探究其功能,我们检测了透明质酸合酶(Has)基因缺陷的基因敲除小鼠的神经生理学。在此我们报告,这些Has突变小鼠容易发生癫痫发作,并且在Has3(-/-)小鼠中,这种表型可能源于脑细胞外间隙(ECS)大小的减小。在三种Has基因敲除模型中,即Has3(-/-)、Has1(-/-)和Has2(CKO),癫痫发作在Has3(-/-)小鼠中最为普遍,该小鼠海马体中的HA减少也最为显著。Has3(-/-)脑片的电生理学显示CA1锥体神经元存在自发性癫痫样活动,而组织学分析显示CA1锥体层的细胞堆积增加。荧光标记物扩散成像显示,分子通过该层ECS的转运减少。通过实时离子电泳法对ECS进行定量分析表明,Has3(-/-)小鼠锥体层的ECS体积选择性减少了约40%。最后,对Has3(-/-)和野生型小鼠脑片进行的渗透压操纵实验为ECS体积与癫痫样活动之间的因果关系提供了证据。我们的结果为HA在调节ECS体积中的生理作用提供了首个直接证据,并表明基于HA的ECS体积保存可能为抗癫痫治疗的开发提供一条新途径。