Suppr超能文献

一种用于组织边缘检测的Gabor小波变换与无监督聚类算法的融合方法。

A fusion method of Gabor wavelet transform and unsupervised clustering algorithms for tissue edge detection.

作者信息

Ergen Burhan

机构信息

Department of Computer Engineering, Faculty of Engineering, Firat University, 23119 Elazig, Turkey.

出版信息

ScientificWorldJournal. 2014 Mar 23;2014:964870. doi: 10.1155/2014/964870. eCollection 2014.

Abstract

This paper proposes two edge detection methods for medical images by integrating the advantages of Gabor wavelet transform (GWT) and unsupervised clustering algorithms. The GWT is used to enhance the edge information in an image while suppressing noise. Following this, the k-means and Fuzzy c-means (FCM) clustering algorithms are used to convert a gray level image into a binary image. The proposed methods are tested using medical images obtained through Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) devices, and a phantom image. The results prove that the proposed methods are successful for edge detection, even in noisy cases.

摘要

本文通过整合伽柏小波变换(GWT)和无监督聚类算法的优势,提出了两种用于医学图像的边缘检测方法。伽柏小波变换用于增强图像中的边缘信息,同时抑制噪声。在此之后,使用k均值和模糊c均值(FCM)聚类算法将灰度图像转换为二值图像。所提出的方法使用通过计算机断层扫描(CT)和磁共振成像(MRI)设备获得的医学图像以及一幅体模图像进行测试。结果证明,所提出的方法即使在有噪声的情况下也能成功地进行边缘检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cb0/3982282/eae95ba6282b/TSWJ2014-964870.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验