一种用于 PET 中无监督异质肿瘤定量的新型模糊 C 均值算法。

A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET.

机构信息

Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva, Switzerland.

出版信息

Med Phys. 2010 Mar;37(3):1309-24. doi: 10.1118/1.3301610.

Abstract

PURPOSE

Accurate and robust image segmentation was identified as one of the most challenging issues facing PET quantification in oncological imaging. This difficulty is compounded by the low spatial resolution and high noise characteristics of PET images. The fuzzy C-means (FCM) clustering algorithm was largely used in various medical image segmentation approaches. However, the algorithm is sensitive to both noise and intensity heterogeneity since it does not take into account spatial contextual information.

METHODS

To overcome this limitation, a new fuzzy segmentation technique adapted to typical noisy and low resolution oncological PET data is proposed. PET images smoothed using a nonlinear anisotropic diffusion filter are added as a second input to the proposed FCM algorithm to incorporate spatial information (FCM-S). In addition, a methodology was developed to integrate the a trous wavelet transform in the standard FCM algorithm (FCM-SW) to allow handling of heterogeneous lesions' uptake. The algorithm was applied to the simulated data of the NCAT phantom, incorporating heterogeneous lesions in the lung and clinical PET/CT images of 21 patients presenting with histologically proven nonsmall-cell lung cancer (NSCLC) and 7 patients presenting with laryngeal squamous cell carcinoma (LSCC) to assess its performance for segmenting tumors with arbitrary size, shape, and tracer uptake. For NSCLC patients, the maximal tumor diameters measured from the macroscopic examination of the surgical specimen served as the ground truth for comparison with the maximum diameter estimated by the segmentation technique, whereas for LSCC patients, the 3D macroscopic tumor volume was considered as the ground truth for comparison with the corresponding PET-based volume. The proposed algorithm was also compared to the classical FCM segmentation technique.

RESULTS

There is a good correlation (R2 = 0.942) between the actual maximal diameter of primary NSCLC tumors estimated using the proposed PET segmentation procedure and those measured from the macroscopic examination, and the regression line agreed well with the line of identity (slope = 1.08) for the group analysis of the clinical data. The standard FCM algorithm seems to underestimate actual maximal diameters of the clinical data, resulting in a mean error of -4.6 mm (relative error of -10.8 +/- 23.1%) for all data sets. The mean error of maximal diameter estimation was reduced to 0.1 mm (0.9 +/- 14.4%) using the proposed FCM-SW algorithm. Likewise, the mean relative error on the estimated volume for LSCC patients was reduced from 21.7 +/- 22.0% for FCM to 8.6 +/- 28.3% using the proposed FCM-SW technique.

CONCLUSIONS

A novel unsupervised PET image segmentation technique that allows the quantification of lesions in the presence of heterogeneity of tracer uptake was developed and evaluated. The technique is being further refined and assessed in clinical setting to delineate treatment volumes for the purpose of PET-guided radiation therapy treatment planning but could find other applications in clinical oncology such as the assessment of response to treatment.

摘要

目的

准确且稳健的图像分割被认为是肿瘤影像学中 PET 定量分析最具挑战性的问题之一。由于 PET 图像的空间分辨率低且噪声特征高,这一难题更加复杂。模糊 C 均值(FCM)聚类算法在各种医学图像分割方法中得到了广泛应用。然而,由于该算法没有考虑空间上下文信息,因此对噪声和强度异质性都很敏感。

方法

为了克服这一限制,提出了一种新的适用于典型噪声和低分辨率肿瘤 PET 数据的模糊分割技术。将使用非线性各向异性扩散滤波器平滑的 PET 图像作为第二个输入添加到所提出的 FCM 算法中,以合并空间信息(FCM-S)。此外,还开发了一种将 a trous 小波变换集成到标准 FCM 算法(FCM-SW)中的方法,以允许处理不均匀摄取的病变。该算法应用于 NCAT 体模的模拟数据,在肺部中加入了不均匀的病变,以及 21 名经组织学证实的非小细胞肺癌(NSCLC)患者和 7 名喉鳞癌(LSCC)患者的临床 PET/CT 图像,以评估其用于分割任意大小、形状和示踪剂摄取的肿瘤的性能。对于 NSCLC 患者,从手术标本的宏观检查中测量的最大肿瘤直径用作与分割技术估计的最大直径进行比较的基准,而对于 LSCC 患者,3D 宏观肿瘤体积用作与相应的基于 PET 的体积进行比较的基准。还将所提出的算法与经典的 FCM 分割技术进行了比较。

结果

使用提出的 PET 分割程序估计的原发性 NSCLC 肿瘤的实际最大直径与从宏观检查中测量的直径之间存在良好的相关性(R2 = 0.942),并且对于临床数据的组分析,回归线与身份线(斜率= 1.08)吻合良好。标准 FCM 算法似乎低估了临床数据的实际最大直径,导致所有数据集的平均误差为-4.6 毫米(相对误差为-10.8%±23.1%)。使用所提出的 FCM-SW 算法,最大直径估计的平均误差降低至 0.1 毫米(0.9%±14.4%)。同样,对于 LSCC 患者,使用所提出的 FCM-SW 技术,估计体积的平均相对误差从 FCM 的 21.7%±22.0%降低至 8.6%±28.3%。

结论

开发并评估了一种新的用于在示踪剂摄取异质性存在的情况下定量分析病变的非监督性 PET 图像分割技术。该技术正在进一步细化和评估中,以便为 PET 引导的放射治疗计划划定治疗体积,但也可以在临床肿瘤学中找到其他应用,例如评估治疗反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索