Institut Pasteur, Mouse Functional Genetics, CNRS URA2578, 75015, Paris, France.
Cell Mol Life Sci. 2014 Sep;71(17):3327-38. doi: 10.1007/s00018-014-1630-3. Epub 2014 May 4.
During early development, the mammalian embryo undergoes a series of profound changes that lead to the formation of two extraembryonic tissues--the trophectoderm and the primitive endoderm. These tissues encapsulate the pluripotent epiblast at the time of implantation. The current model proposes that the formation of these lineages results from two consecutive binary cell fate decisions. The first controls the formation of the trophectoderm and the inner cell mass, and the second controls the formation of the primitive endoderm and the epiblast within the inner cell mass. While early mammalian embryos develop with extensive plasticity, the embryonic pattern prior to implantation is remarkably reproducible. Here, we review the molecular mechanisms driving the cell fate decision between primitive endoderm and epiblast in the mouse embryo and integrate data from recent studies into the current model of the molecular network regulating the segregation between these lineages and their subsequent differentiation.
在早期发育过程中,哺乳动物胚胎经历了一系列深刻的变化,导致两个胚外组织——滋养外胚层和原始内胚层的形成。这些组织在植入时包围多能的上胚层。目前的模型提出,这些谱系的形成是由两个连续的二元细胞命运决定的。第一个决定滋养外胚层和内细胞团的形成,第二个决定原始内胚层和内细胞团中的上胚层的形成。虽然早期哺乳动物胚胎具有广泛的可塑性,但植入前的胚胎模式具有惊人的可重复性。在这里,我们综述了驱动小鼠胚胎中原始内胚层和上胚层之间细胞命运决定的分子机制,并将最近研究的数据整合到调节这些谱系分离及其随后分化的分子网络的现行模型中。