Nedumpully-Govindan Praveen, Li Lin, Alexov Emil G, Blenner Mark A, Ding Feng
Department of Physics and Astronomy and Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA.
Bioinformatics. 2014 Aug 15;30(16):2302-9. doi: 10.1093/bioinformatics/btu309. Epub 2014 May 2.
Tyrosine sulfation is a type of post-translational modification (PTM) catalyzed by tyrosylprotein sulfotransferases (TPST). The modification plays a crucial role in mediating protein-protein interactions in many biologically important processes. There is no well-defined sequence motif for TPST sulfation, and the underlying determinants of TPST sulfation specificity remains elusive. Here, we perform molecular modeling to uncover the structural and energetic determinants of TPST sulfation specificity.
We estimate the binding affinities between TPST and peptides around tyrosines of both sulfated and non-sulfated proteins to differentiate them. We find that better differentiation is achieved after including energy costs associated with local unfolding of the tyrosine-containing peptide in a host protein, which depends on both the peptide's secondary structures and solvent accessibility. Local unfolding renders buried peptide-with ordered structures-thermodynamically available for TPST binding. Our results suggest that both thermodynamic availability of the peptide and its binding affinity to the enzyme are important for TPST sulfation specificity, and their interplay results into great variations in sequences and structures of sulfated peptides. We expect our method to be useful in predicting potential sulfation sites and transferable to other TPST variants. Our study may also shed light on other PTM systems without well-defined sequence and structural specificities.
All the data and scripts used in the work are available at http://dlab.clemson.edu/research/Sulfation.
酪氨酸硫酸化是一种由酪蛋白磺基转移酶(TPST)催化的翻译后修饰(PTM)。这种修饰在许多生物学重要过程中介导蛋白质-蛋白质相互作用方面起着关键作用。TPST硫酸化没有明确的序列基序,TPST硫酸化特异性的潜在决定因素仍然难以捉摸。在这里,我们进行分子建模以揭示TPST硫酸化特异性的结构和能量决定因素。
我们估计了TPST与硫酸化和非硫酸化蛋白质酪氨酸周围肽段之间的结合亲和力以区分它们。我们发现,在将与宿主蛋白中含酪氨酸肽段局部解折叠相关的能量成本纳入考虑后,能实现更好的区分,这取决于肽段的二级结构和溶剂可及性。局部解折叠使埋藏的具有有序结构的肽段在热力学上可用于TPST结合。我们的结果表明,肽段的热力学可用性及其与酶的结合亲和力对TPST硫酸化特异性都很重要,它们的相互作用导致硫酸化肽段的序列和结构有很大差异。我们期望我们的方法在预测潜在硫酸化位点方面有用,并可转移到其他TPST变体。我们的研究也可能为其他没有明确序列和结构特异性的PTM系统提供启示。
工作中使用的所有数据和脚本可在http://dlab.clemson.edu/research/Sulfation获取。