D. E. Shaw Research, New York, New York 10036, USA.
Proteins. 2010 Jun;78(8):1950-8. doi: 10.1002/prot.22711.
Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accuracy of the force fields used for such simulations and spurring efforts to refine these force fields. Recent modifications to the Amber and CHARMM protein force fields, for example, have improved the backbone torsion potentials, remedying deficiencies in earlier versions. Here, we further advance simulation accuracy by improving the amino acid side-chain torsion potentials of the Amber ff99SB force field. First, we used simulations of model alpha-helical systems to identify the four residue types whose rotamer distribution differed the most from expectations based on Protein Data Bank statistics. Second, we optimized the side-chain torsion potentials of these residues to match new, high-level quantum-mechanical calculations. Finally, we used microsecond-timescale MD simulations in explicit solvent to validate the resulting force field against a large set of experimental NMR measurements that directly probe side-chain conformations. The new force field, which we have termed Amber ff99SB-ILDN, exhibits considerably better agreement with the NMR data.
硬件和软件的最新进展使得对生物分子进行越来越长的分子动力学 (MD) 模拟成为可能,这暴露出用于此类模拟的力场的准确性存在某些局限性,并促使人们努力改进这些力场。例如,对 Amber 和 CHARMM 蛋白质力场的最近修改改进了骨架扭转势,纠正了早期版本的缺陷。在这里,我们通过改进 Amber ff99SB 力场的氨基酸侧链扭转势进一步提高了模拟精度。首先,我们使用模型α-螺旋系统的模拟来确定四种残基类型,它们的构象分布与基于蛋白质数据库统计的预期差异最大。其次,我们优化了这些残基的侧链扭转势,以匹配新的高级量子力学计算。最后,我们使用微秒时间尺度的 MD 模拟在明确定义的溶剂中对所得力场进行了验证,该模拟使用了大量直接探测侧链构象的实验 NMR 测量值。我们将新的力场命名为 Amber ff99SB-ILDN,它与 NMR 数据的一致性要好得多。