Plant Biotechnol J. 2014 Sep;12(7):894-902. doi: 10.1111/pbi.12192. Epub 2014 May 5.
Genes conferring resistance to the herbicides glyphosate, oxyfluorfen and norflurazon were developed and tested for use as dominant selectable markers in genetic transformation of Chlamydomonas reinhardtii and as potential tools for the protection of commercial-scale algal production facilities against contamination by organisms sensitive to these broad-spectrum herbicides. A synthetic glyphosate acetyltransferase (GAT) gene, when fitted with a strong Chlamydomonas promoter, conferred a 2.7×-fold increase in tolerance to the EPSPS inhibitor, glyphosate, in transgenic cells compared with progenitor WT cells. A mutant Chlamydomonas protoporphyrinogen oxidase (protox, PPO) gene previously shown to produce an enzyme insensitive to PPO-inhibiting herbicides, when genetically engineered, generated transgenic cells able to tolerate up to 136× higher levels of the PPO inhibitor, oxyfluorfen, than nontransformed cells. Genetic modification of the Chlamydomonas phytoene desaturase (PDS) gene-based gene sequences found in various norflurazon-resistant organisms allowed production of transgenic cells tolerant to 40× higher levels of norflurazon than nontransgenic cells. The high efficiency of all three herbicide resistance genes in producing transgenic cells demonstrated their suitability as dominant selectable markers for genetic transformation of Chlamydomonas and, potentially, other eukaryotic algae. However, the requirement for high concentrations of glyphosate and its associated negative effects on cell growth rates preclude its consideration for use in large-scale production facilities. In contrast, only low doses of norflurazon and oxyfluorfen (~1.5 μm and ~0.1 μm, respectively) are required for inhibition of cell growth, suggesting that these two herbicides may prove effective in large-scale algal production facilities in suppressing growth of organisms sensitive to these herbicides.
赋予抗草甘膦、氟氧氟草醚和氟磺胺草醚除草剂的基因被开发并测试用于衣藻的遗传转化中的显性选择标记,并作为防止这些广谱除草剂敏感的生物污染商业规模藻类生产设施的潜在工具。当与强衣藻启动子结合时,合成的草甘膦乙酰转移酶(GAT)基因赋予转基因细胞比原始 WT 细胞对 EPSPS 抑制剂草甘膦的耐受性增加 2.7 倍。先前显示产生对 PPO 抑制剂不敏感的酶的突变衣藻原卟啉原氧化酶(protox,PPO)基因,经过基因工程改造后,产生了能够耐受高达 136 倍的 PPO 抑制剂氟氧氟草醚的转基因细胞,而非转化细胞。在各种抗氟磺胺草醚的生物体中发现的基于衣藻类胡萝卜素脱饱和酶(PDS)基因的基因序列的遗传修饰,使得能够产生耐受 40 倍以上的氟磺胺草醚的转基因细胞,而非转化细胞。所有三种除草剂抗性基因在产生转基因细胞方面的高效率证明了它们作为衣藻和潜在的其他真核藻类遗传转化的显性选择标记的适用性。然而,草甘膦的高浓度及其对细胞生长速率的负面影响排除了其在大规模生产设施中的应用。相比之下,仅需要低剂量的氟磺胺草醚和氟氧氟草醚(分别约为 1.5μm 和 0.1μm)来抑制细胞生长,这表明这两种除草剂可能在抑制这些除草剂敏感的生物的生长方面在大规模藻类生产设施中证明是有效的。