School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA.
Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
Plant Physiol. 2021 Dec 4;187(4):2637-2655. doi: 10.1093/plphys/kiab418.
Programmable site-specific nucleases, such as the clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated protein 9 (Cas9) ribonucleoproteins (RNPs), have allowed creation of valuable knockout mutations and targeted gene modifications in Chlamydomonas (Chlamydomonas reinhardtii). However, in walled strains, present methods for editing genes lacking a selectable phenotype involve co-transfection of RNPs and exogenous double-stranded DNA (dsDNA) encoding a selectable marker gene. Repair of the dsDNA breaks induced by the RNPs is usually accompanied by genomic insertion of exogenous dsDNA fragments, hindering the recovery of precise, scarless mutations in target genes of interest. Here, we tested whether co-targeting two genes by electroporation of pairs of CRISPR/Cas9 RNPs and single-stranded oligodeoxynucleotides (ssODNs) would facilitate the recovery of precise edits in a gene of interest (lacking a selectable phenotype) by selection for precise editing of another gene (creating a selectable marker)-in a process completely lacking exogenous dsDNA. We used PPX1 (encoding protoporphyrinogen IX oxidase) as the generated selectable marker, conferring resistance to oxyfluorfen, and identified precise edits in the homolog of bacterial ftsY or the WD and TetratriCopeptide repeats protein 1 genes in ∼1% of the oxyfluorfen resistant colonies. Analysis of the target site sequences in edited mutants suggested that ssODNs were used as templates for DNA synthesis during homology directed repair, a process prone to replicative errors. The Chlamydomonas acetolactate synthase gene could also be efficiently edited to serve as an alternative selectable marker. This transgene-free strategy may allow creation of individual strains containing precise mutations in multiple target genes, to study complex cellular processes, pathways, or structures.
可编程的位点特异性核酸酶,如成簇的规律间隔的短回文重复序列(CRISPR)/ CRISPR 相关蛋白 9(Cas9)核糖核蛋白(RNP),已允许在衣藻(莱茵衣藻)中创建有价值的基因敲除突变和靶向基因修饰。然而,在有细胞壁的菌株中,目前用于编辑缺乏可选择表型的基因的方法涉及 RNP 和编码可选择标记基因的外源双链 DNA(dsDNA)的共转染。RNP 诱导的 dsDNA 断裂的修复通常伴随着外源 dsDNA 片段的基因组插入,这阻碍了感兴趣的靶基因中精确、无疤痕突变的恢复。在这里,我们通过电穿孔两对 CRISPR/Cas9 RNP 和单链寡脱氧核苷酸(ssODN)来共靶向两个基因,测试了这是否会通过选择另一个基因(创建可选择标记)的精确编辑来促进感兴趣的基因(缺乏可选择表型)中精确编辑的恢复-在完全缺乏外源 dsDNA 的过程中。我们使用 PPX1(编码原卟啉原 IX 氧化酶)作为生成的可选择标记,赋予对氧氟草的抗性,并在约 1%的氧氟草抗性菌落中鉴定出同源细菌 ftsY 或 WD 和 TetratriCopeptide 重复蛋白 1 基因的精确编辑。对编辑突变体的靶位点序列分析表明,ssODN 被用作同源定向修复过程中 DNA 合成的模板,这是一个容易发生复制错误的过程。衣藻乙酰乳酸合酶基因也可以有效地编辑为替代的可选择标记。这种无转基因策略可能允许创建含有多个靶基因中精确突变的单个菌株,以研究复杂的细胞过程、途径或结构。