Alcaíno Jennifer, Romero Ignacio, Niklitschek Mauricio, Sepúlveda Dionisia, Rojas María Cecilia, Baeza Marcelo, Cifuentes Víctor
Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
PLoS One. 2014 May 5;9(5):e96626. doi: 10.1371/journal.pone.0096626. eCollection 2014.
The yeast Xanthophyllomyces dendrorhous synthesizes the carotenoid astaxanthin, which has applications in biotechnology because of its antioxidant and pigmentation properties. However, wild-type strains produce too low amounts of carotenoids to be industrially competitive. Considering this background, it is indispensable to understand how the synthesis of astaxanthin is controlled and regulated in this yeast. In this work, the steps leading to the synthesis of the carotenoid precursor geranylgeranyl pyrophosphate (GGPP, C20) in X. dendrorhous from isopentenyl pyrophosphate (IPP, C5) and dimethylallyl pyrophosphate (DMAPP, C5) was characterized. Two prenyl transferase encoding genes, FPS and crtE, were expressed in E. coli. The enzymatic assays using recombinant E. coli protein extracts demonstrated that FPS and crtE encode a farnesyl pyrophosphate (FPP, C15) synthase and a GGPP-synthase, respectively. X. dendrorhous FPP-synthase produces geranyl pyrophosphate (GPP, C10) from IPP and DMAPP and FPP from IPP and GPP, while the X. dendrorhous GGPP-synthase utilizes only FPP and IPP as substrates to produce GGPP. Additionally, the FPS and crtE genes were over-expressed in X. dendrorhous, resulting in an increase of the total carotenoid production. Because the parental strain is diploid, the deletion of one of the alleles of these genes did not affect the total carotenoid production, but the composition was significantly altered. These results suggest that the over-expression of these genes might provoke a higher carbon flux towards carotenogenesis, most likely involving an earlier formation of a carotenogenic enzyme complex. Conversely, the lower carbon flux towards carotenogenesis in the deletion mutants might delay or lead to a partial formation of a carotenogenic enzyme complex, which could explain the accumulation of astaxanthin carotenoid precursors in these mutants. In conclusion, the FPS and the crtE genes represent good candidates to manipulate to favor carotenoid biosynthesis in X. dendrorhous.
酵母类胡萝卜素红酵母(Xanthophyllomyces dendrorhous)能合成类胡萝卜素虾青素,由于其抗氧化和色素沉着特性,虾青素在生物技术领域有应用价值。然而,野生型菌株产生的类胡萝卜素量过低,缺乏工业竞争力。基于此背景,了解该酵母中虾青素的合成如何被控制和调节至关重要。在本研究中,对类胡萝卜素红酵母中从异戊烯基焦磷酸(IPP,C5)和二甲基烯丙基焦磷酸(DMAPP,C5)合成类胡萝卜素前体香叶基香叶基焦磷酸(GGPP,C20)的步骤进行了表征。两个编码异戊烯基转移酶的基因,FPS和crtE,在大肠杆菌中表达。使用重组大肠杆菌蛋白提取物进行的酶活性测定表明,FPS和crtE分别编码法尼基焦磷酸(FPP,C15)合酶和GGPP合酶。类胡萝卜素红酵母FPP合酶从IPP和DMAPP产生香叶基焦磷酸(GPP,C10),从IPP和GPP产生FPP,而类胡萝卜素红酵母GGPP合酶仅利用FPP和IPP作为底物产生GGPP。此外,FPS和crtE基因在类胡萝卜素红酵母中过表达,导致总类胡萝卜素产量增加。由于亲本菌株是二倍体,这些基因的一个等位基因缺失并不影响总类胡萝卜素产量,但组成发生了显著变化。这些结果表明,这些基因的过表达可能促使更高的碳通量流向类胡萝卜素合成,很可能涉及类胡萝卜素生成酶复合物的更早形成。相反,缺失突变体中流向类胡萝卜素合成的较低碳通量可能会延迟或导致类胡萝卜素生成酶复合物的部分形成,这可以解释这些突变体中虾青素类胡萝卜素前体的积累。总之,FPS和crtE基因是有利于类胡萝卜素红酵母中类胡萝卜素生物合成的良好操作候选基因。