Suppr超能文献

萜类合酶结构:复杂催化的一个迄今为止不完整的视图。

Terpenoid synthase structures: a so far incomplete view of complex catalysis.

机构信息

Department of Biochemistry, Biophysics, & Molecular Biology, Iowa State University, Ames, IA 50011, USA.

出版信息

Nat Prod Rep. 2012 Oct;29(10):1153-75. doi: 10.1039/c2np20059g. Epub 2012 Aug 21.

Abstract

The complexity of terpenoid natural products has drawn significant interest, particularly since their common (poly)isoprenyl origins were discovered. Notably, much of this complexity is derived from the highly variable cyclized and/or rearranged nature of the observed hydrocarbon skeletal structures. Indeed, at least in some cases it is difficult to immediately recognize their derivation from poly-isoprenyl precursors. Nevertheless, these diverse structures are formed by sequential elongation to acyclic precursors, most often with subsequent cyclization and/or rearrangement. Strikingly, the reactions used to assemble and diversify terpenoid backbones share a common carbocationic driven mechanism, although the means by which the initial carbocation is generated does vary. High-resolution crystal structures have been obtained for at least representative examples from each of the various types of enzymes involved in producing terpenoid hydrocarbon backbones. However, while this has certainly led to some insights into the enzymatic structure-function relationships underlying the elongation and simpler cyclization reactions, our understanding of the more complex cyclization and/or rearrangement reactions remains limited. Accordingly, selected examples are discussed here to demonstrate our current understanding, its limits, and potential ways forward.

摘要

萜类天然产物的复杂性引起了人们的极大关注,特别是自从发现它们常见的(多)异戊二烯起源之后。值得注意的是,这种复杂性很大程度上源于所观察到的烃骨架结构中环化和/或重排的高度可变性。事实上,在某些情况下,很难立即认识到它们是从多异戊二烯前体衍生而来的。然而,这些不同的结构是通过顺序延伸到无环前体形成的,通常随后进行环化和/或重排。引人注目的是,用于组装和多样化萜类骨架的反应共享一个共同的碳阳离子驱动机制,尽管生成初始碳阳离子的方式有所不同。已经获得了至少代表性的来自参与产生萜类碳氢骨架的各种类型的酶的每种酶的高分辨率晶体结构。然而,尽管这确实为延伸和更简单的环化反应的酶结构-功能关系提供了一些见解,但我们对更复杂的环化和/或重排反应的理解仍然有限。因此,本文选择了一些示例来演示我们目前的理解、其局限性以及潜在的前进方向。

相似文献

2
Unearthing the roots of the terpenome.探寻萜类化合物组的根源。
Curr Opin Chem Biol. 2008 Apr;12(2):141-50. doi: 10.1016/j.cbpa.2007.12.008. Epub 2008 Feb 20.
3
Structural and Chemical Biology of Terpenoid Cyclases.萜类环化酶的结构与化学生物学
Chem Rev. 2017 Sep 13;117(17):11570-11648. doi: 10.1021/acs.chemrev.7b00287. Epub 2017 Aug 25.
5
Assembly-Line Catalysis in Bifunctional Terpene Synthases.双功能萜类合酶中的装配线催化作用。
Acc Chem Res. 2021 Oct 19;54(20):3780-3791. doi: 10.1021/acs.accounts.1c00296. Epub 2021 Jul 13.
9
Understanding mechanisms of terpene synthases using substrate analogs.利用底物类似物理解萜类合酶的机制。
Methods Enzymol. 2024;699:187-205. doi: 10.1016/bs.mie.2024.04.003. Epub 2024 Apr 23.

引用本文的文献

本文引用的文献

4
Divergent evolution of oxidosqualene cyclases in plants.植物中角鲨烯环化酶的趋异进化。
New Phytol. 2012 Mar;193(4):1022-1038. doi: 10.1111/j.1469-8137.2011.03997.x. Epub 2011 Dec 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验