Kato Shota, Takaichi Shinichi, Ishikawa Takahiro, Asahina Masashi, Takahashi Senji, Shinomura Tomoko
Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan.
Plant Molecular and Cellular Biology Laboratory, Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan.
BMC Plant Biol. 2016 Jan 5;16:4. doi: 10.1186/s12870-015-0698-8.
Euglena gracilis, a unicellular phytoflagellate within Euglenida, has attracted much attention as a potential feedstock for renewable energy production. In outdoor open-pond cultivation for biofuel production, excess direct sunlight can inhibit photosynthesis in this alga and decrease its productivity. Carotenoids play important roles in light harvesting during photosynthesis and offer photoprotection for certain non-photosynthetic and photosynthetic organisms including cyanobacteria, algae, and higher plants. Although, Euglenida contains β-carotene and xanthophylls (such as zeaxanthin, diatoxanthin, diadinoxanthin and 9'-cis neoxanthin), the pathway of carotenoid biosynthesis has not been elucidated.
To clarify the carotenoid biosynthetic pathway in E. gracilis, we searched for the putative E. gracilis geranylgeranyl pyrophosphate (GGPP) synthase gene (crtE) and phytoene synthase gene (crtB) by tblastn searches from RNA-seq data and obtained their cDNAs. Complementation experiments in Escherichia coli with carotenoid biosynthetic genes of Pantoea ananatis showed that E. gracilis crtE (EgcrtE) and EgcrtB cDNAs encode GGPP synthase and phytoene synthase, respectively. Phylogenetic analyses indicated that the predicted proteins of EgcrtE and EgcrtB belong to a clade distinct from a group of GGPP synthase and phytoene synthase proteins, respectively, of algae and higher plants. In addition, we investigated the effects of light stress on the expression of crtE and crtB in E. gracilis. Continuous illumination at 460 or 920 μmol m(-2) s(-1) at 25 °C decreased the E. gracilis cell concentration by 28-40 % and 13-91 %, respectively, relative to the control light intensity (55 μmol m(-2) s(-1)). When grown under continuous light at 920 μmol m(-2) s(-1), the algal cells turned reddish-orange and showed a 1.3-fold increase in the crtB expression. In contrast, EgcrtE expression was not significantly affected by the light-stress treatments examined.
We identified genes encoding CrtE and CrtB in E. gracilis and found that their protein products catalyze the early steps of carotenoid biosynthesis. Further, we found that the response of the carotenoid biosynthetic pathway to light stress in E. gracilis is controlled, at least in part, by the level of crtB transcription. This is the first functional analysis of crtE and crtB in Euglena.
纤细裸藻是裸藻纲中的一种单细胞植物性鞭毛虫,作为可再生能源生产的潜在原料备受关注。在用于生物燃料生产的室外开放式池塘养殖中,过多的直射阳光会抑制这种藻类的光合作用并降低其生产力。类胡萝卜素在光合作用的光捕获过程中发挥重要作用,并为某些非光合和光合生物(包括蓝细菌、藻类和高等植物)提供光保护。尽管裸藻纲含有β-胡萝卜素和叶黄素(如玉米黄质、二氧黄质、二异黄质和9'-顺式新黄质),但类胡萝卜素生物合成途径尚未阐明。
为了阐明纤细裸藻中的类胡萝卜素生物合成途径,我们通过从RNA-seq数据中进行tblastn搜索,寻找推定的纤细裸藻香叶基香叶基焦磷酸(GGPP)合酶基因(crtE)和八氢番茄红素合酶基因(crtB),并获得了它们的cDNA。在大肠杆菌中用菠萝泛菌的类胡萝卜素生物合成基因进行互补实验表明,纤细裸藻crtE(EgcrtE)和EgcrtB cDNA分别编码GGPP合酶和八氢番茄红素合酶。系统发育分析表明,预测的EgcrtE和EgcrtB蛋白分别属于与藻类和高等植物的一组GGPP合酶和八氢番茄红素合酶蛋白不同的进化枝。此外,我们研究了光胁迫对纤细裸藻中crtE和crtB表达的影响。在25℃下以460或920 μmol m(-2) s(-1)的连续光照分别使纤细裸藻细胞浓度相对于对照光强(55 μmol m(-2) s(-1))降低了28 - 40%和13 - 91%。当在920 μmol m(-2) s(-1)的连续光照下生长时,藻细胞变成红橙色,crtB表达增加了1.3倍。相比之下,EgcrtE表达不受所检测的光胁迫处理的显著影响。
我们在纤细裸藻中鉴定了编码CrtE和CrtB的基因,并发现它们的蛋白质产物催化类胡萝卜素生物合成的早期步骤。此外,我们发现纤细裸藻中类胡萝卜素生物合成途径对光胁迫的响应至少部分受crtB转录水平的控制。这是对裸藻中crtE和crtB的首次功能分析。